Think Automation and beyond...

IIDEC

Relays \& Sockets

General-purpose electromechanical relays and sockets

IDEC CORPORATION

Nhà cung cấp thiết bị điện chuyên nghiệp
\square

(C) CIRCUTロR
©NTM NICHIFU

- N L

Fefuii Electric
Innovating Energy Technology
Autonics
Sensors \& Controllers

Honeywell

Schneider

D!̣CH VỤ CHĂM SÓC KHÁCH HÀNG TOÀN DIỆN

Tư vấn chọn sản phẩm

Giao hàng tận nơi

Hỗ trợ kỹ thuật

Relays (Selection Guide)

Note: The above table shows initial values.
*1: Measured using 5V DC, 1A voltage drop method
*2: Measured at the rated voltage $\left(25^{\circ} \mathrm{C}\right)$

Relays (Selection Guide)

Note: The above table shows initial values.
*1: Measured using 5V DC, 1A voltage drop method
$* 2$: Measured at the rated voltage $\left(25^{\circ} \mathrm{C}\right)$

Relays (Selection Guide)

Note: The above table shows initial values.

1. Measured using 5 V DC, 1A voltage drop method

2: Measured at the rated voltage $\left(25^{\circ} \mathrm{C}\right.$

Relays (Selection Guide)

Note: The above table shows initial values.
*1: Measured using 5 DC, 1A voltage dro
*1: Measured using 5V DC, 1 A voltage drop method
*2: Measured at the rated voltage $\left(25^{\circ} \mathrm{C}\right)$
*2: Measured at the rated voltage $\left(25^{\circ} \mathrm{C}\right)$

Relays (Selection Guide)

Note: The above table shows initial values
1: Measured using 5V DC, 1 A voltage drop method
*2: Measured at the rated voltage

Note: The above table shows initial values
1: Measured using 5 V DC, 1 A voltage drop method
2: Measured at the rated voltage $\left(25^{\circ} \mathrm{C}\right)$

Operating Instructions

Driving Circuit for Relays

1. To make sure of correct relay operation, apply rated voltage to the relay coil.
2. Input voltage for the DC coil:

A complete DC voltage is best for the coil power to make sure of stable relay operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectification circuit, the relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.

3. Operating the relay in synchronism with AC load: If the relay operates in synchronism with the AC power voltage of the load, the relay life may be reduced. If this is the case, select a relay in consideration of the required reliability for the load. Or, make the relay turn on and off irrespective of the AC power phase or near the point where the AC phase crosses zero voltage.

4. Leakage current while relay is off:

When driving an element at the same time as the relay operation, a special consideration is needed for the circuit design. As shown in the incorrect circuit below, Leakage current (Io) flows through the relay coil while the relay is off. Leakage current causes the coil release failure or adversely affects the vibration resistance and shock resis tance. Design a circuit as shown in the correct example.

Incorrect

Correct

5. Surge suppression for transistor driving circuits: When the relay coil is turned off, a high-voltage pulse is generated, causing the transistor to deteriorate and sometimes to break. Be sure to connect a diode to suppress the counter electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

Protection for Relay Contacts

1. The contact ratings show maximum values. Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using the actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

$\begin{aligned} & \cup \\ & \simeq \end{aligned}$		This protection circuit can be used when the load impedance is smaller than the RC impedance in an AC load power circuit. R: Resistor of approximately the same resistance value as the load C: 0.1 to $1 \mu \mathrm{~F}$
		This protection circuit can be used for both AC and DC load power circuits. R: Resistor of approximately the same resistance value as the load C: 0.1 to $1 \mu \mathrm{~F}$
O 0 0		This protection circuit can be used for DC load power circuits. Use a diode with the following ratings. Reverse withstand voltage: Power voltage of the load circuit $\times 10$ Forward current: More than the load current
\% $\frac{0}{01}$ 0 $>$		This protection circuit can be used for both AC and DC load power circuits. For a best result, when using on a power voltage of 24 to 48 V AC/DC, connect a varistor across the load. When using on a power voltage of 100 to 240 V AC/DC, connect a varistor across the contacts.

3. Do not use a contact protection circuit as shown below:

| Power |
| :--- | :--- |

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor, however, will improve the switching characteristics of a DC inductive load.

Notes on PC Board Mounting

1. When mounting two or more relays on a PC board collectively, take other components into consideration. Do not use relays in the vicinity of strong magnetic field as this may affect relay operation.
2. Do not install the relay on the PC board in the way the PC board is bent, otherwise copper foil may be cut or solder may be displaced after operating for a long time or due to vibration, degrading the relay's performance.

Operating Instructions

Operating Instructions

3. Relay direction must be taken into consideration when installing the relay on PC board so that shock noise resistance, life, contact reliability is maintained.

- Shock Resistance

To maintain shock resistance, it is ideal to mount the relay so that the armature movement is perpendicular to the direction of vibration and shock.

- Life

Large load that causes arcs may result in the contact material scattered off, accumulating around the contact. This will degrade insulation resistance between the circuits. Make sure that relay is mounted in the correct direction.

- Contact Reliability

It is not desirable for a single relay to switch both large and low level load. The scattered contact material produced when switching the large load adheres to the contacts when switching the low level load and may cause contact failure. Therefore. when multipole relay, avoid install the relay in the direction where the low level contacts comes below the large load. Also avoid terminal connection.
4. Mounting Space

When two or more mounting relays closely, observe the instructions below.

- Ambient Temperature

When two ore more relays are mounted, provide sufficient spacing between the relays (see the minimum spacing) so that the interaction of relays do not generate excessive heat.

- When multiple PC boards with relays are mounted to a rack, the temperature may rise excessively. When mounting relays, leave enough space so that heat will not build up, and so that the Relays' ambient temperature remains within the specified operating temperature range.

5. RV3T

- Auto-soldering does not cause flux to enter inside the relay. Also, auto-cleaning will not cause the cleaning liquid to enter inside the relay.
- Use alcohol-based solvents for cleaning.
- Cleaning with the boiling method is recommended. Avoid ultrasonic cleaning on relays. Use of ultrasonic cleaning may cause breaks in the coil or slight sticking of the contacts due to the ultrasonic energy.

Soldering

1. When soldering the relay terminals, use a soldering iron of $60 \mathrm{~W}\left(350^{\circ} \mathrm{C}\right)$, and quickly complete soldering within approximately 3 seconds. $\mathrm{Sn}-\mathrm{Ag}-\mathrm{Cu}$ is recommended for lead-free soldering.
2. Auto-soldering: Solder at $250^{\circ} \mathrm{C}$ within 4 to 5 seconds.
3. Because the terminal part is filled with epoxy resin, do not excessively solder or bend the terminal. Otherwise, air tightness will degrade;
4. Avoid the soldering iron from touching the relay cover or the epoxy filled terminal part.
5. Use a non-corrosive rosin flux.

Other Precautions

1. General notice:

- To maintain the initial characteristics, do not drop the relay or shock the relay.
- The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
- Use the relay in environments free from condensation of dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.
- Make sure that the coil voltage does not exceed the applicable coil voltage range.

2. Connecting outputs to electronic circuits:

When the output is connected to a load which responds very quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration.

- Connect an integral circuit.
- Suppress the pulse voltage due to bouncing within the noise margin of the load.

3. UL- and CSA-approved ratings may differ from product rated values determined by IDEC.
4. Do not use relays in the vicinity of strong magnetic field as this may affect relay operation.

- DC diode type has polarity.
- The surge absorbing element on AC relays with RC or DC relays with diode is provided to absorb the counter electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Safety Precautions

- Turn off the power to the relay before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.
- Use wires of the proper size to meet the voltage and current requirements. Tighten the terminal screws on the relay socket to the proper tightening torque.

RJ series Slim Power Relays

Compact and rugged power relays. Large switching capacity.

- Compact housing only $12.7-\mathrm{mm}$ wide.

Large contact rating
RJ1S (1-pole): 12A
RJ2S (2-pole): 8A

- Non-polarized LED indicator available. IDEC's unique light guide structure enables high visibility of coil status from any direction.
- Excellent electrical and mechanical life. Electrical life: 200,000 operations (AC load)
Mechanical life: 30 million operations (AC coil)
- Environmentally friendly, RoHS directive compliant (EU directive 2002/95/EC). Contains no lead, cadmium, mercury, hexavalent chromium, PBB or PBDE).
- Diode type

Diode reverse withstand voltage: 1000V

- UL recognized, CSA certified, EN compliant.
- Lloyd Register type approved.

Applicable Standards	Mark	Certification Organization / File No.
UL508	\%	UL recognized, File No. E55996
CSA C22.2 No. 14	SA.	CSA File No. LR35144
EN61810-1	$\widehat{\text { Voge }}$	VDE No. 40015055
	CE	EU Low Voltage Directive

Plug-in Terminal

Style	1-pole (SPDT)		2-pole (DPDT)	
	Part No.	Code	Part No.	Code
Standard (with LED Indicator)	RJ1S-CL-*	A12 D5 A24 D6 A110 D12	RJ2S-CL-*	A12 D5 A24 D6 A110 D12
Simple (without LED Indicator)	RJ1S-C-*	A120 D24 A220 D48 A230 D100 A240	RJ2S-C-*	A120 D24 A220 D48 A230 D100 A240
With diode (DC coil only) (with LED indicator) A1: -, A2: +	RJ1S-CLD-*	$\begin{gathered} \text { D12 } \\ \text { D24 } \\ \text { D48 } \\ \text { D100 } \end{gathered}$	RJ2S-CLD-*	$\begin{gathered} \text { D12 } \\ \text { D24 } \\ \text { D48 } \\ \text { D100 } \end{gathered}$
With diode (DC coil only) A1: -, A2: +	RJ1S-CD-*		RJ2S-CD-*	
With diode (DC coil only) (with LED indicator) A1: +, A2: -	RJ1S-CLD1-*		RJ2S-CLD1-*	
With diode (DC coil only) A1: +, A2: -	RJ1S-CD1-*		RJ2S-CD1-*	
With RC (with LED indicator)	RJ1S-CLR-*	A12 A24 A110 A220	RJ2S-CLR-*	$\begin{gathered} \text { A12 } \\ \text { A24 } \\ \text { A110 } \\ \text { A220 } \\ \hline \end{gathered}$
With RC (without LED indicator)	RJ1S-CR-*		RJ2S-CR-*	

Coil Voltage Code *

Code	Rated Coil Voltage
A12	12 V AC
A24	24 V AC
A110	110 V AC
A120	120 V AC
A220	220 V AC
A230	230 V AC
A240	240 V AC
D5	5 V DC
D6	6 V DC
D12	12 V DC
D24	24 V DC
D48	48 V DC
D100	$100-110 \mathrm{~V} \mathrm{DC}$

Note: Specify a coil voltage code in place of $*$ in the Part No.

Note: Coil voltages other than shown above are available (ex. A115, A230, A240)

Contact Ratings

No. of Poles	Contact	Allowable Contact Power		Rated Load			Allowable Switching Current	Allowable Switching Voltage	Minimum Applicable Load (Note)
		Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load $\cos \varnothing=0.3$ $\mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$			
1	NO	3000 VA AC 360W DC	1875VA AC180W DC	250V AC	12A	7.5A	12A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	5V DC, 100 mA (reference value)
				30 V DC	12A	6 A			
	NC	3000VA AC 180W DC	$\begin{aligned} & \text { 1875VA AC } \\ & 90 \mathrm{~W} \text { DC } \end{aligned}$	250V AC	12A	7.5A			
				30V DC	6A	3A			
2	NO	$\begin{aligned} & \text { 2000VA AC } \\ & 240 \mathrm{~W} \text { DC } \end{aligned}$	1000VA AC120W DC	250V AC	8A	4A	8A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	5 V DC, 10 mA (reference value)
				30V DC	8A	4A			
	NC	$\begin{aligned} & \text { 2000VA AC } \\ & \text { 120W DC } \end{aligned}$	$\begin{aligned} & \text { 1000VA AC } \\ & \text { 60W DC } \end{aligned}$	250V AC	8A	4A			
				30V DC	4A	2A			

Note: Measured at operating frequency of 120 operations per minute.
Failure rate level P, 1/10,000,000 (reference value) (JIS C5003)

RJ Series Slim Power Relays

Approved Ratings

Voltage					CSA								VDE			
	Resistive				Resistive				Inductive				Resistive		$\begin{gathered} \hline \text { AC-15, DC-13 } \\ \text { (Note) } \end{gathered}$	
	RJ1		RJ2		RJ1		RJ2		RJ1		RJ2		RJ1	RJ2	RJ1	RJ2
	NO	NC	NO	NO	NO	NO										
250 V AC	12A	12A	8A	8A	12A	12A	8A	8A	7.5A	7.5A	4A	4A	12A	8A	6A	3A
30 V DC	12A	6A	8A	4A	12A	6A	8A	4A	6A	3 A	4A	2A	12A	8A	2.5A	2A

Note: According to the utilization categories of IEC60947-5-1

Coil Ratings

Rated Voltage		Coil Voltage Code	Without LED Indicator			With LED Indicator			Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			Power Consumption	
		$\begin{gathered} \text { Rated } \\ \text { Current }(\mathrm{mA}) \\ \pm 15 \%\left(\text { at } 20^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$	Coil Resistance (Ω) $\pm 10 \%$ (at $20^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Rated } \\ \text { Current (mA) } \\ \pm 15 \%\left(\text { at } 20^{\circ} \mathrm{C}\right) \end{gathered}$		Coil Resistance (Ω) $\pm 10 \%$ (at $20^{\circ} \mathrm{C}$)	Minimum Pickup Voltage	Dropout Voltage	Maximum Continuous Applied Voltage (Note)				
		50 Hz		60 Hz	50 Hz					60 Hz			
AC 50/60 Hz	12 V AC		A12	87.3	75.0	62.5	91.1	78.8	62.5	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$	$\begin{aligned} & 30 \% \\ & \text { minimum } \end{aligned}$	140\%	Approx. 0.9 VA $(60 \mathrm{~Hz})$
	24 V AC		A24	43.9	37.5	243	47.5	41.1	243				
	110 V AC	A110	9.6	8.2	5270	9.5	8.1	5270					
	120 V AC	A120	8.8	7.5	6400	8.7	7.4	6400					
	220 V AC	A220	4.8	4.1	21530	4.8	4.1	21530					
	230 V AC	A230	4.6	3.9	24100	4.6	3.9	24100					
	240 V AC	A240	4.3	3.7	25570	4.3	3.7	25570					
DC	5 V	D5	106		47.2	110		47.2	70% maximum	10% minimum	170\%	$\begin{gathered} \text { Approx. } \\ 0.53 \mathrm{~W} \end{gathered}$	
	6 V	D6	88.3		67.9	92.2		67.9					
	12 V	D12	44.2		271	48.0		271					
	24 V	D24	22.1		1080	25.7		1080					
	48 V	D48	11.0		4340	10.7		4340					
	100-110V	D100	5.3-5.8		18870	5.2-5.7		18870			160\%		

Note: Maximum continuous applied voltage is the maximum voltage that can be applied on relay coils.

Specifications

Model		RJ1S	RJ2S
Number of Poles		1-pole	2-pole
Contact Configuration		SPDT	DPDT
Contact Material		Silver-nickel alloy	
Degree of Protection		IP40	
Contact Resistance (initial value) (*1)		$50 \mathrm{~m} \Omega$ maximum	
Operate Time (*2)		15 ms maximum	
Release Time (*2)		10 ms maximum (with diode: 20 ms maximum)	
Dielectric Strength	Between contact and coil	5000 V AC, 1 minute	5000 V AC, 1 minute
	Between contacts of the same pole	1000V AC, 1 minute	1000 V AC, 1 minute
	Between contacts of different poles	-	3000 V AC, 1 minute
Vibration Resistance	Operating extremes	10 to 55 Hz , amplitude 0.75 mm	
	Damage limits	10 to 55 Hz , amplitude 0.75 mm	
Shock Resistance	Operating extremes	NO contact: $200 \mathrm{~m} / \mathrm{s}^{2}$, NC contact: $100 \mathrm{~m} / \mathrm{s}^{2}$	
	Damage limits	$1000 \mathrm{~m} / \mathrm{s}^{2}$	
Electrical Life (rated load)		AC load: 200,000 operations minimum (operation frequency 1800 operations per hour) DC load: 100,000 operations minimum (operation frequency 1800 operations per hour)	
Mechanical Life (no load)		AC coil: $30,000,000$ operations minimum (operation frequency 18,000 operations per hour) DC coil: $50,000,000$ operations minimum (operation frequency 18,000 operations per hour)	
Operating Temperature (*3)		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity		5 to 85\% RH (no condensation)	
Weight (approx.)		19 g	

Note: Above values are initial values.
*1: Measured using 5V DC, 1 A voltage drop method.
*2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bounce time.
*3: 100\% rated voltage.

Applicable Socket

Terminal	Part No.		Page
	RJ1S (1-pole)	RJ2S (2-pole)	
Standard Screw Terminal	SJ1S-05B	SJ2S-05B	64
Finger-safe Screw Terminal	SJ1S-07L	SJ2S-07L	

RJ Series Slim Power Relays

Dimensions

All dimensions in mm.

Internal Connection Diagrams
RJ1S-CL-* Standard (w/LED Indicator)

RJ1S-C-* Simple

RJ1S-CLD-* With Diode (w/LED Indicator)

RJ1S-CD-* With Diode

RJ1S-CLD1-* With Diode (w/LED Indicator)

RJ1S-CD1-* With Diode

RJ1S-CLR-* With RC (w/LED Indicator)

RJ1S-CR-* With RC

RJ2S-C-* Simple

RJ2S-CLD-* With Diode (w/LED Indicator)

RJ2S-CD-* With Diode

RJ2S-CLD1-* With Diode (w/LED Indicator)

RJ2S-CD1-* With Diode

RJ2S-CLR-* With RC (w/LED Indicator)

RJ2S-CR-* With RC

RJ Series Slim Power Relays

Electrical Life Curve

RJ1 (resistive load)

RJ2 (resistive load)

Maximum Switching Capacity
RJ1 (resistive load)

Load Voltage (V)

RJ2 (resistive load)

Operating Temperature and Coil Temperature Rise
RJ1

RJ2

The above temperature rise curves show characteristics when 100% the rated coil voltage is applied. The slanted dashed line indicates allowable temperature rise for the coil at different ambient temperatures.

RJ Series Slim Power Relay Plug-in Terminal (bifurcated contacts)

High contact reliability with bifurcated contacts
(minimum applicable load: 1 V DC, $100 \mu \mathrm{~A}$)

- The smallest width for 2-pole/bifurcated contacts relay (based on IDEC research as of April 2011)
- Non-polarized green LED indicator available (except for simple type)
- IDEC's unique light-guide structure enables an RJ relay to be identified by the illuminating LED.
- Diode, reverse polarity diode, and RC circuits are available.
- Peak inverse voltage is 1000 V .
- UL recognized, CSA certified, VDE approved, EN compliant.

Applicable Standards

Applicable Standards	Mark	File No. or Organization
UL508	FSA C22.2 No.14	UL Recognized File No. E55996
	CSA	
File No. LR35144		

Relays

Bifurcated Contacts

Style	2-pole (bifurcated contacts DPDT)	
	Part No.	Coil Voltage Code
Standard (with LED indicator)	RJ22S-CL-*	A12, A24, A110, A115, A120, A220, A230, A240, D5, D6, D12, D24, D48, D100
Simple (without LED indicator)	RJ22S-C-*	
With diode (with LED indicator)	RJ22S-CLD-*	
With diode (without LED indicator)	RJ22S-CD-*	D5, D6, D12, D24, D48, D100

Coil Voltage Code

Code	Voltage
A12	12 V AC
A24	24 V AC
A110	110 V AC
A115	115 V AC
A120	120 V AC
A220	220 V AC
A230	230 V AC
A240	240 V AC
D5	5 V DC
D6	6V DC
D12	12V DC
D24	24 V DC
D48	48 V DC
D100	100-110V DC

Contact Ratings

Allowable Contact Power		Rated Load			Allowable Switching Current	Allowable Switching Voltage	Minimum Applicable Load (Note)
Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load $\cos \varnothing=0.4 \quad \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$			
250VA AC$30 W$ DC	100VA AC 15W DC	250V AC	1A	0.4 A	1A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 1 \mathrm{VDC} \\ 100 \mu \mathrm{~A} \\ \text { (reference value) } \end{gathered}$
		30 V DC	1A	0.5A			

Note: Measured at operating frequency of 120 operations per minute.
Failure rate level P, 1/10,000,000 (reference value) (JIS C5003)

RJ Series Slim Power Relay Plug-in Terminal (bifurcated contacts)

Ratings

Voltage	UL Ratings				CSA Ratings						VDE Ratings Resistive	
	Resistive		General Use		Resistive		Inductive		General Use			
	NO	NC										
250 V AC	-	-	1A	1A	-	-	-	-	1A	1A	1A	1A
30 V DC	1A	1A	-	-	1A	1A	1A	1A	-	-	1A	1A

Coil Ratings

Rated Voltage (V)		Coil Voltage Code	Without LED Indicator			With LED Indicator			Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			Power Consumption	
		$\begin{gathered} \text { Rated Current } \\ \text { (mA) } \pm 15 \% \\ \text { (at } 20^{\circ} \mathrm{C} \text {) } \end{gathered}$	$\begin{gathered} \text { Coil } \\ \text { Resistance (} \Omega \text {) } \\ \left. \pm 10 \% \text { (at } 20^{\circ} \mathrm{C}\right) \end{gathered}$	$\begin{aligned} & \text { Rated Current (mA) } \\ & \pm 15 \% \text {, (at } 20^{\circ} \mathrm{C} \text {) } \end{aligned}$		$\begin{gathered} \text { Coil } \\ \text { Resistance (} \Omega \text {) } \\ \pm 10 \% \text { (at } 20^{\circ} \mathrm{C} \text {) } \end{gathered}$	Pickup Voltage (initial value)	Dropout Voltage (initial value)	Maximum Continuous Applied Voltage (Note)				
		50 Hz		60 Hz	50 Hz					60 Hz			
$\begin{aligned} & \mathrm{AC} \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	12 V		A12	87.3	75.0	62.5	91.1	78.8	62.5	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$	$\begin{gathered} 30 \% \\ \text { minimum } \end{gathered}$	140\%	Approx. 1.1VA (50Hz) 0.9 to 1.2VA $(60 \mathrm{~Hz})$
	24 V		A24	43.9	37.5	243	47.5	41.1	243				
	110 V	A110	9.6	8.2	5,270	9.5	8.1	5,270					
	115 V	A115	9.1	7.8	6,030	9.0	7.7	6,030					
	120 V	A120	8.8	7.5	6,400	8.7	7.4	6,400					
	220 V	A220	4.8	4.1	21,530	4.8	4.1	21,530					
	230 V	A230	4.6	3.9	24,100	4.6	3.9	24,100					
	240 V	A240	4.3	3.7	25,570	4.3	3.7	25,570					
DC	5 V	D5	106		47.2	110		47.2	$\begin{gathered} 70 \% \\ \text { maximum } \end{gathered}$	$\begin{gathered} 10 \% \\ \text { minimum } \end{gathered}$	170\%	Approx. 0.53 to 0.64 W	
	6 V	D6	88.3		67.9	92.2		67.9					
	12V	D12	44.2		271	48.0		271					
	24 V	D24	22.1		1,080	25.7		1,080					
	48 V	D48	11.0		4,340	10.7		4,340					
	100-110V	D100	5.3-5.8		18,870	5.2-5.7		18,870			160\%		

Note: Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.

Specifications

Model		RJ22S
Number of Poles		2-pole
Contact Configuration		DPDT (bifurcated contacts)
Contact Material		AgNi (gold clad)
Degree of Protection		IP40
Contact Resistance (initial value)		$50 \mathrm{~m} \Omega$ maximum (measured using 5V DC, 1A voltage drop method)
Operating Time (at $20^{\circ} \mathrm{C}$)		15 ms maximum (at the rated coil voltage, excluding contact bounce time) With diode or RC: 20 ms maximum
Release Time (at $20^{\circ} \mathrm{C}$)		10 ms maximum (at the rated coil voltage, excluding contact bounce time) With diode or RC: 20 ms maximum
Impulse Withstand Voltage		10,000V AC (between contact and coil)
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	Between contact and coil	5,000V AC, 1 minute
	Between contacts of the same pole	1,000V AC, 1 minute
	Between contacts of the different poles	3,000V AC, 1 minute
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.75 mm
	Damage Limits	10 to 55 Hz , amplitude 0.75 mm
Shock Resistance	Operating Extremes	NO contact: $200 \mathrm{~m} / \mathrm{s}^{2}$, NC contact: $100 \mathrm{~m} / \mathrm{s}^{2}$
	Damage Limits	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Electrical Life		AC load: 100,000 operations minimum (operating frequency 1,800 per hour) DC load: 200,000 operations minimum (operating frequency 1,800 per hour)
Mechanical Life		AC load: 10 million operations minimum (operating frequency 18,000 operations per hour) DC load: 20 million operations minimum (operating frequency 18,000 operations per hour)
Operating Temperature (100\% rated voltage)		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		5 to 85\% RH (no condensation)
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)
Storage Humidity		5 to 85\% RH (no condensation)
Weight (approx.)		19 g

Applicable Sockets

Style	Part No.	Ordering No.	Package Quantity
Standard Screw Terminal	SJ2S-05B	SJ2S-05B	1
Finger-safe Screw Terminal	SJ2S-07L	SJ2S-07L	1
PC Board Terminal	SJ2S-61	SJ2S-61PN10	10
	SJ2S-61	SJ2S-61PN50	50

RJ Series Slim Power Relay Plug-in Terminal (bifurcated contacts)

Dimensions

All dimensions in mm.
Internal Connection (bottom view)

RJ22S-CL-* Standard (with LED indicator)

RJ22S-C-* Simple

$$
\square
$$

RJ22S-CLD-* With diode (with LED indicator)

RJ22S-CD-* With diode

Operating Temperature and Coil Temperature Rise

- The slanted dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.
- The above temperature rise curves show the characteristics when 100% of the rated coil voltage is applied.

RJ Series Slim Power Relays PC Board Terminal

Compact power relays. High switching capacity up to 16A.

- Contact configurations:

SPDT, SPST-NO, DPDT, DPST-NO.
SPDT, SPST-NO are available in high capacity type.

- Compact housing-only 12.7 -mm wide.
- High contact rating

RJ1V (1-pole): 12A, 16A
RJ2V (2-pole): 8A
-IDEC's unique spring return mechanism ensures long electrical and mechanical life.
Electrical life: 200,000 operations (AC load)
Mechanical life: 30 million operations (AC coil, SPDT, DPDT)

- Flux-tight structure
- Environmentally friendly, RoHS directive compliant (EU directive 2002/95/EC). Contains no lead, cadmium, mercury, hexavalent chromium, PBB, or PBDE).

Standard	Mark	Certification Organization / File No.
UL508	$\because 1$	UL recognized File No. E55996
CSA C22.2 No. 14	S8.	CSA File No. LR35144
EN61810-1	VDEs	VDE No. 40015055
	CE	EU Low Voltage Directive

PC Board Terminal

No. of Poles	Style	Contact	Part No.	Coil Voltage Code	Package Quantity
1	Plain	SPDT	RJ1V-C-*	Specify a coil voltage code in place of $*$ in the Part No.	
		SPST-NO	RJ1V-A-*	A12 D5 A24 D6	
	High Capacity	SPDT	RJ1V-CH-*	A115 D24 A120 D48	
		SPST-NO	RJ1V-AH-*	$\begin{aligned} & \text { A230 } \\ & \text { A240 } \end{aligned}$	
2	Plain	DPDT	RJ2V-C-*		
		DPST-NO	RJ2V-A-*		

Coil Voltage Code *

Code	Rated Coil Voltage
A12	12 V AC
A24	24 V AC
A110	110 V AC
A115	115 V AC
A120	120 V AC
A220	220 V AC
A230	230 V AC
A240	240 V AC
D5	5 V DC
D6	6 V DC
D12	12 V DC
D24	24 V DC
D48	48 V DC
D100	$100-110 \mathrm{~V}$ DC

Note: Specify a coil voltage code in place of $*$ in the Part No.

Contact Ratings

No.of Poles	Style	Contact	Allowable Contact Power		Rated Load			Allowable Switching Current	Allowable Switching Voltage	Minimum Applicable Load (reference value)
			Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load $\begin{aligned} & \cos \varnothing=0.3 \\ & L / R=7 \mathrm{~ms} \\ & \hline \end{aligned}$			
1	Plain	NO	3000VAAC 360W DC	1875VA AC 180W DC	250V AC	12A	7.5A	12A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} D \mathrm{C} \end{aligned}$	5V DC, 100 mA
					30 V DC	12A	6A			
		NC	$\begin{aligned} & \text { 3000VA AC } \\ & \text { 180W DC } \end{aligned}$	$\begin{aligned} & \text { 1875VA AC } \\ & \text { 90W DC } \end{aligned}$	250V AC	12A	7.5A			
					30 V DC	6A	3A			
	High Capacity	NO	$\begin{aligned} & \text { 4000VA AC } \\ & \text { 480W DC } \end{aligned}$	$\begin{aligned} & \text { 2000VA AC } \\ & \text { 240W DC } \end{aligned}$	250V AC	16A	8A	16A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	5V DC, 100 mA
					30 V DC	16A	8A			
		NC	$\begin{aligned} & \text { 4000VA AC } \\ & 240 \mathrm{~W} D \end{aligned}$	$\begin{aligned} & \text { 2000VA AC } \\ & \text { 120W DC } \end{aligned}$	250V AC	16A	8A			
					30 V DC	8A	4A			
2	Plain	NO	2000VA AC 240W DC	1000VA AC 120W DC	250V AC	8A	4A	8A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	5 V DC, 10 mA
					30V DC	8A	4A			
		NC	$\begin{aligned} & \text { 2000VA AC } \\ & \text { 120W DC } \end{aligned}$	$\begin{aligned} & \text { 1000VA AC } \\ & \text { 60W DC } \end{aligned}$	250V AC	8A	4A			
					30 V DC	4A	2A			

RJ Series Slim Power Relays PC Board Terminal

Standard Ratings
UL ratings

Voltage	Resistive					
	RJ1 (plain)		RJ2 (plain)		RJ1 (high capacity)	
	NO	NC	NO	NC	NO	NC
AC250V	12 A	6 A	8 A	4 A	16 A	8 A
30V DC	12 A	6 A	8 A	4 A	16 A	8 A

VDE ratings

Voltage	Resistive			AC-15, DC-13 (Note)	
	RJ1 (plain)	RJ2 (plain)	RJ1 (high capacity)	RJ1 (plain)	RJ2 (plain)
	NO	NO	NO	NO	NO
AC250V	$12 A$	$8 A$	16 A	6 A	3 A
30V DC	12 A	8A	16 A	2.5 A	2A

Note: The operational current represents the classification by making and breaking currents (IEC 60947-5-1.)

CSA ratings

Voltage	Resistive						Inductive					
	RJ1 (plain)		RJ2 (plain)		RJ1 (high capacity)		RJ1 (plain)		RJ2 (plain)		RJ1 (high capacity)	
	NO	NC										
AC250V	12A	12A	8A	8A	16A	16A	7.5A	7.5A	4A	4A	8A	8A
30 V DC	12A	6A	8A	4A	16A	8A	6A	3 A	4A	2A	8A	4A

Coil Ratings

Rated Voltage		Coil Voltage Code	$\begin{gathered} \text { Rated } \\ \text { Current (} \mathrm{mA} \text {) } \\ \pm 15 \%\left(\text { at } 20^{\circ} \mathrm{C}\right) \\ \hline \end{gathered}$		$\begin{gathered} \text { Coil } \\ \text { Resistance (} \Omega \text {) } \\ \pm 10 \%\left(\text { at } 20^{\circ} \mathrm{C}\right) \end{gathered}$	Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			Power Consumption	
		Minimum Pickup Voltage (initial value)			Dropout Voltage (initial value)	Maximum Continuous Applied Voltage (Note)				
		50 Hz	60 Hz							
$\begin{gathered} \mathrm{AC} \\ 50 / 60 \mathrm{~Hz} \end{gathered}$	12 V		A12	87.3	75.0	62.5	$\begin{aligned} & 80 \% \\ & \text { maximum } \end{aligned}$	$\begin{aligned} & 30 \% \\ & \text { minimum } \end{aligned}$	140\%	Approx. $1.1 \mathrm{VA}(50 \mathrm{~Hz})$ Approx. 0.9 to 1.2VA $(60 \mathrm{~Hz})$
	24 V	A24	43.9	37.5	243					
	110 V	A110	9.6	8.2	5270					
	115 V	A115	9.1	7.8	6030					
	120 V	A120	8.8	7.5	6400					
	220 V	A220	4.8	4.1	21530					
	230 V	A230	4.6	3.9	24100					
	240 V	A240	4.3	3.7	25570					
DC	5 V	D5	106		47.2	$\begin{gathered} 70 \% \\ \text { maximum } \end{gathered}$	$\begin{aligned} & 10 \% \\ & \text { minimum } \end{aligned}$	170\%	Approx. 0.53 W to 0.64 W	
	6 V	D6	88.3		67.9					
	12 V	D12	44.2		271					
	24 V	D24	22.1		1080					
	48 V	D48	11.0		4340					
	100-110V	D100	5.3-5.8		18870			160\%		

Note: Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.

Specifications

Model		RJ1V Plain	RJ1V High Capacity	RJ2V Plain
Number of Poles		1-pole	1-pole	2-pole
Contact Configuration		SPDT, SPST-NO	SPDT, SPST-NO	DPDT, DPST-NO
Contact Material		Ag-Ni	Ag-Sn-In	Ag-Ni
Enclosure Ratings		Flux-tight		
Contact Resistance (initial value) (*1)		$50 \mathrm{~m} \Omega$ maximum		
Operate Time (*2)		15 ms maximum		
Release Time (*2)		10 ms maximum		
Impulse Withstand Voltage		10,000 (between contact and coil)		
Dielectric Strength	Between contact and coil	5000 V AC, 1 minute		5000 V AC, 1 minute
	Between contacts of the same pole	1000 V AC, 1 minute		1000 V AC, 1 minute
	Between contacts of different poles	-		3000 V AC, 1 minute
Vibration Resistance	Operating extremes	10 to 55 Hz , amplitude 0.75 mm		
	Damage limits	10 to 55 Hz , amplitude 0.75 mm		
Shock Resistance	Operating extremes	NO contact: $200 \mathrm{~m} / \mathrm{s}^{2}$ (20G), NC contact: $100 \mathrm{~m} / \mathrm{s}^{2}$ (10G)		
	Damage limits	$1000 \mathrm{~m} / \mathrm{s}^{2}$ (100G)		
Mechanical Life (no load)		AC coil: 30 million operations minimum (SPDT/DPDT, operation frequency 18,000 operations per hour) 10 million operations minimum (SPST-NO/DPST-NO, operation frequency 18,000 operations/ $/ \mathrm{h}$) DC coil: 50 million operations minimum (SPDT/DPDT, operation frequency 18,000 operations per hour) 20 million operations minimum (SPST-NO/DPST-NO, operation frequency 18,000 operations $/ \mathrm{h}$)		
Electrical Life (rated load)		AC load: 200,000 operations minimum (operation frequency 1,800 operations per hour) DC load: 100,000 operations minimum (operation frequency 1,800 operations per hour)		
Operating Temperature (*3)		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity		5 to 85\% RH (no condensation)		
Weight (approx.)		$\begin{array}{\|l} \hline \text { SPDT: } \quad 17 \mathrm{~g} \\ \text { SPST-NO: } 16 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|lr} \hline \text { SPDT: } \quad 17 \mathrm{~g} \\ \text { SPST-NO: } 16 \mathrm{~g} \\ \hline \end{array}$	$\begin{array}{\|lr} \hline \text { DPDT: } \quad 17 \mathrm{~g} \\ \text { DPST-NO: } 16 \mathrm{~g} \\ \hline \end{array}$

*1: Measured using 5V DC, 1A voltage drop method.
*2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bounce time.
*3: 100\% rated voltage.

RJ Series Slim Power Relays PC Board Terminal

Electrical Life Curve

RJ1V Plain

Maximum Switching Current RJ1V Plain

RJ1V High Capacity

RJ1V High Capacity

RJ2V Plain

RJ2V Plain

Ambient Temperature vs. Temperature Rise Curves

RJ1V Plain

The above temperature rise curves show the characteristics when 100% of the rated coil voltage is applied.
The slant dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.

RJ Series Slim Power Relays PC Board Terminal

Dimensions

RJ1V-C-* Plain SPDT

RJ1V-A-*
Plain SPST-NO

RJ1V-CH-*
High Capacity SPDT

High Capacity SPST-NO

RJ2V-C-* Plain DPDT

RJ2V-A-* Plain DPST-NO

Mounting Hole Layout (Bottom View)

Internal Circuit
Diagram
(Bottom View)

All dimensions in mm.

Instructions

Notes on PC Board Mounting

- When using two or more RJ relays on a PC board, maintain at least 5 mm distance between the relays.
- Manual soldering: Use a soldering iron of $60 \mathrm{~W}\left(350^{\circ} \mathrm{C}\right)$, and quickly complete soldering with approximately 3 seconds. Sn-AgCu is recommended when using lead-free solder.
- Auto-soldering: Solder at $250^{\circ} \mathrm{C}$ within 4 to 5 seconds.
- Because the terminal part is filled with epoxy resin, do not excessively solder or bend the terminal. Otherwise, air tightness will degrade.
- Avoid the soldering iron from touching the relay cover or the epoxy filled terminal part
- Use a non-corrosive resin flux.

RJ Series Slim Power Relays PC Board Terminal (bifurcated contacts)

High contact reliability with bifurcated contacts (minimum applicable load: 1V DC, $100 \mu \mathrm{~A}$)

- DPDT, DPST-NO contacts are available.
- The smallest width for 2-pole/bifurcated contacts relay (based on IDEC research as of April 2011)
- IDEC's unique spring return mechanism ensures long life.
- Flux-tight structure

Applicable Standards

Applicable Standards	Mark	File No. or Organization
UL508		UL Recognized File No. E55996
CSA C22.2 No. 14	(5)	CSA File No. LR35144
EN61810-1	$\widehat{\mathrm{VDEE}}$	VDE No. 40015055
	C	EU Low Voltage Directive

Relays

Bifurcated Contacts

Style	Contact	2-pole (bifurcated contacts DPDT)	
		Part No.	Coil Voltage Code
Plain	DPDT	RJ22V-C-*	A12, A24, A110, A115, A120, A220, A230,
	DPST-NO	RJ22V-A-*	A240, D5, D6, D12, D24, D48, D100

Coil Voltage Code

Code	Voltage
A12	12V AC
A24	24 V AC
A110	110V AC
A115	115 VAC
A120	120 V AC
A220	220 V AC
A230	230 V AC
A240	240 V AC
D5	5V DC
D6	6V DC
D12	12V DC
D24	24 V DC
D48	48V DC
D100	$100-110 \mathrm{~V} \mathrm{DC}$

Contact Ratings

Allowable Contact Power		Rated Load			Allowable Switching Current	Allowable Switching Voltage	Minimum Applicable Load (Note)
Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load $\cos \varnothing=0.4 \quad \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$			
250VA AC 30W DC	100VA AC 15W DC	250 V AC	1A	0.4 A	1A	$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{~V} \text { DC } \end{aligned}$	$\begin{gathered} 1 \mathrm{~V} D C \\ 100 \mu \mathrm{~A} \\ \text { (reference value) } \end{gathered}$
		30V DC	1A	0.5A			

Note: Measured at operating frequency of 120 operations per minute (failure rate level P, reference value)

Ratings

Voltage	UL ratings				CSA Ratings						VDE Ratings Resistive	
	Resistive		General Use		Resistive		Inductive		General Use			
	NO	NC										
250 V AC	-	-	1A	1A	-	-	-	-	1A	1A	1A	1A
30 V DC	1A	1A	-	-	1A	1A	1A	1A	-	-	1A	1A

RJ Series Slim Power Relays PC Board Terminal (bifurcated contacts)

Coil Ratings

Rated Voltage (V)		Coil Voltage Code	Rated Current $(\mathrm{mA}) \pm 15 \%$ (at $20^{\circ} \mathrm{C}$)		Coil Resistance (Ω) $\pm 10 \%\left(\right.$ at $20^{\circ} \mathrm{C}$)	Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			Power Consumption	
		50 Hz	60 Hz	Pickup Voltage (initial value)		Dropout Voltage (initial value)	Maximum Continuous Applied Voltage (Note)			
$\begin{aligned} & \text { AC } \\ & 50 / 60 \mathrm{~Hz} \end{aligned}$	12 V		A12	87.3	75.0	62.5	$\begin{gathered} \text { 80\% } \\ \text { maximum } \end{gathered}$	$\begin{gathered} 30 \% \\ \text { minimum } \end{gathered}$	140\%	Approx. 1.1VA (50Hz) 0.9 to 1.2VA (60 Hz)
	24 V	A24	43.9	37.5	243					
	110 V	A110	9.6	8.2	5,270					
	115 V	A115	9.1	7.8	6,030					
	120 V	A120	8.8	7.5	6,400					
	220 V	A220	4.8	4.1	21,530					
	230 V	A230	4.6	3.9	24,100					
	240 V	A240	4.3	3.7	25,570					
DC	5 V	D5	106		47.2	70\% maximum	10% minimum	170\%	Approx. 0.53 to 0.64 W	
	6 V	D6	88.3		67.9					
	12 V	D12	44.2		271					
	24 V	D24	22.1		1,080					
	48 V	D48	11.0		4,340					
	100-110V	D100	5.3-5.8		18,870			160\%		

Note: Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.
Specifications

Model		RJ22V
Number of Poles		2-pole
Contact Configuration		DPDT (bifurcated), DPST-NO (bifurcated)
Contact Material		AgNi (gold clad)
Degree of Protection		Flux-tight structure
Contact Resistance (initial value)		$50 \mathrm{~m} \Omega$ maximum (measured using 5V DC, 1 A voltage drop method)
Operating Time (at $20^{\circ} \mathrm{C}$)		15 ms maximum (at the rated coil voltage, excluding contact bounce time)
Release Time (at $20^{\circ} \mathrm{C}$)		10 ms maximum (at the rated coil voltage, excluding contact bounce time)
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Impulse Withstand Voltage		10,000V AC (between contact and coil)
Dielectric Strength	Between contact and coil	5,000V AC, 1 minute
	Between contacts of the same pole	1,000V AC, 1 minute
	Between contacts of the different poles	$3,000 \mathrm{~V}$ AC, 1 minute
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.75 mm
	Damage Limits	10 to 55 Hz , amplitude 0.75 mm
Shock Resistance	Operating Extremes	NO contact: $200 \mathrm{~m} / \mathrm{s}^{2}$, NC contact: $100 \mathrm{~m} / \mathrm{s}^{2}$
	Damage Limits	$1,000 \mathrm{~m} / \mathrm{s}^{2}$
Electrical Life		AC load: 100,000 operations minimum (operating frequency 1,800 per hour) DC load: 200,000 operations minimum (operating frequency 1,800 per hour)
Mechanical Life		AC load: 10 million operations minimum (operating frequency 18,000 operations per hour) DC load: 20 million operations minimum (operating frequency 18,000 operations per hour)
Operating Temperature (100\% rated voltage)		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		5 to 85\% RH (no condensation)
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)
Storage Humidity		5 to 85\% RH (no condensation)
Weight (approx.)		DPDT: 17g, DPST-NO: 16g

RJ Series Slim Power Relays PC Board Terminal (bifurcated contacts)

Dimensions

RJ22V-A-*

Mounting Hole Layout

All dimensions in mm.

Internal Circuit Diagram (Bottom View)

Operating Temperature and Coil Temperature Rise

- The slanted dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.
- The above temperature rise curves show the characteristics when 100% of the rated coil voltage is applied.

\triangle Safety Precautions

- Turn off the power to the RJ relay before starting installation, removal, wiring, maintenance, and inspection. Failure to turn power off may cause electrical shock or fire hazard.
- Observe the specifications and rated values, otherwise electrical shock or fire hazard may be caused.

RU series Universal Relays

Full featured universal miniature relays
Designed with environment taken into consideration

- Two terminal styles: plug-in and PCB mount
- Non-polarized LED indicator available on plug-in relays
- No internal wires, lead-free construction
- Cadmium-free contacts
- Mechanical flag indicator available on plug-in relays
- Manual latching lever with color coding for AC or DC coil
- Snap-on yellow marking plate; optional marking plates are available in four other colors
- Maximum contact ratings: 10A (RU2), 6A (RU4), 3A (RU42)
- UL, CSA, c-UL, EN compliant
- Lloyd Register type approved.

Applicable Standard	Mark	Certification Organization / File No.
UL508 CSA C22.2 No. 14	FA	UL Recognized File No. E66043
CSA C22.2 No. 14	CSA File No. LR35144	
EN61810-1	TUV	TÜV SÜD
		EU Low Voltage Directive

With Latching Lever

Mechanical Indicator
The contact position can be confirmed through the five small windows.

Lever in the Latched Position

Latching Lever
Using the latching lever, operation can be checked without energizing the coil. The latching lever is color coded for AC and DC coils.

AC coil: Orange
DC coil: Green

Marking Plate
Standard yellow marking plate is easily replaced with optional marking plates in four colors for easy identification of relays.

LED Indicator
Non-polarized green LED indicator is standard provision for plug-in terminal, latching lever types

In Normal Operation

Note: Turn off the power to the relay coil when using the latching lever. After checking the operation, return the latching lever in the normal position.

Without Latching Lever

	AC/DC Color For identificati	DC coils.	elay Coil Tape Co	
	AC coil: Y DC coil: B		Coil Rated Voltage	Tape Color
			24 V AC	White
	,	,	100 to 110V AC	Clear
Mechanical Indicator	1	1	110 to 120V AC	Blue
		-	200 to 220V AC	Black
Marking Plate			220 to 240V AC	Red
			24V DC	Green
LED Indicator	88	8	6V DC	
Non-polarized green LED		-	12 V DC	Voltage
indicator is standard provision for			48 V DC	yellow tape
plug-in terminal, except for simple types.			110V DC	

RU Series Universal Relays

Single Contact

Termination	Latching Lever	Style	Part No.		Coil Voltage Code *
			DPDT	4PDT	
Plug-in Terminal (Note 1)	With Latching Lever	Standard	RU2S-*	RU4S-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D110
		With RC (AC coil only)	RU2S-R-*	RU4S-R-*	A100, A110, A200, A220
		With diode (DC coil only)	RU2S-D-*	RU4S-D-*	D6, D12, D24, D48, D110
		With diode (DC coil only) Reverse polarity coil	RU2S-D1-*	RU4S-D1-*	D24
	Without Latching Lever	Standard	RU2S-C-*	RU4S-C-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D110
		With RC (AC coil only)	RU2S-CR-*	RU4S-CR-*	A100, A110, A200, A220
		With diode (DC coil only)	RU2S-CD-*	RU4S-CD-*	D6, D12, D24, D48, D110
		With diode (DC coil only) Reverse polarity coil	RU2S-CD1-*	RU4S-CD1-*	D24
		Simple (Note 2)	RU2S-NF-*	RU4S-NF-*	A24, A100, A110, A200, A220 D6, D12, D24, D48, D110
PCB Terminal	Without Latching Lever	Simple (Note 2)	RU2V-NF-*	RU4V-NF-*	

Bifurcated Contact

Termination	Latching Lever	Style	Part No. 4PDT	Coil Voltage Code *

Note 1: Plug-in terminal, except for simple types, have an LED indicator and a mechanical indicator as standard.
Note 2: Simple types do not have an LED indicator, a mechanical indicator, and a latching lever.
Part No. Development
Specify a coil voltage code in place of $*$ in the Part No.

Coil Voltage Code $*$	Coil Rating
A24	24 V AC
A100	$100-110 \mathrm{~V} \mathrm{AC}$
A110	$110-120 \mathrm{~V} \mathrm{AC}$
A200	$200-220 \mathrm{~V} \mathrm{AC}$
A220	$220-240 \mathrm{~V} \mathrm{AC}$
D6	6 V DC
D12	12 V DC
D24	24 V DC
D48	48 V DC
D100	100 V DC
D110	110 V DC

Accessory

Name	Part No.	Ordering No.	Color Code *	Package Quantity
Marking Plate	RU9Z-P*	RU9Z-P*PN10	A (orange), G (green), S (blue), W (white), Y (yellow)	10

Note: Specify a color code in place of the Part No. When ordering, specify the Ordering No.
The marking plate can be removed from the relay by inserting a flat screwdriver under the marking plate.

RU Series Universal Relays
Coil Ratings

Rated Voltage (V)		Coil Voltage Code	Rated Current (mA) $\pm 15 \%$ (at $20^{\circ} \mathrm{C}$)		$\begin{aligned} & \text { Coil Resistance }(\Omega) \\ & \pm 10 \%\left(\text { at } 20^{\circ} \mathrm{C}\right) \end{aligned}$	Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)			
		Maximum Continuous Applied Voltage			Minimum Pickup Voltage	Dropout Voltage			
		50 Hz	60 Hz						
$\begin{gathered} \text { AC } \\ (50 / 60 \\ \mathrm{Hz}) \end{gathered}$	24		A24	49.3	42.5	164	110\%	80\% maximum	30\% minimum
	100-110	A100	9.2-11.0	7.8-9.0	3,460				
	110-120	A110	8.4-10.0	7.1-8.2	4,550				
	200-220	A200	4.6-5.5	4.0-4.6	14,080				
	220-240	A220	4.2-5.0	3.6-4.2	18,230				
DC	6	D6	155		40	110\%	80\% maximum	10\% minimum	
	12	D12	80		160				
	24	D24	44.7		605				
	48	D48	18		2,560				
	100	D100	9.7		10,000				
	110	D110	8.9		12,100				

Note 1: The rated current includes the current draw by the LED indicator.

Note 2: Rated voltage 100V DC is available for the bifurcated contact only.
Contact Ratings

Contact	Continu-ousCurrent	Allowable Contact Power		Voltage (V)	Rated Load		
		Resistive Load	Inductive Load		Res. Load	Ind. Load	Electrical Life (operations)
DPDT (RU2)	10A	2500VA AC 300W DC	1250VA AC 150W DC	250 AC	10A	5A	100,000 min.
					5A	-	500,000 min.
					-	2.5A	$300,000 \mathrm{~min}$.
				30 DC	10A	5A	100,000 min.
					5A	-	500,000 min.
					-	2.5A	300,000 min.
				110 DC	0.6A	0.4 A	100,000 min.
$\begin{aligned} & \text { 4PDT } \\ & \text { (RU4) } \end{aligned}$	6A	$\begin{gathered} \text { 1500VA AC } \\ \text { 180W DC } \end{gathered}$	600VA AC 90W DC	250 AC	6A	2.6A	50,000 min.
					3A	0.8A	200,000 min.
				30 DC	6A	2.7A	50,000 min.
					3A	1.5A	200,000 min.
				110 DC	0.65A	0.33A	50,000 min.
					0.33A	0.18A	200,000 min.
4PDT (RU42) bifurcated	3A	750VA AC 90W DC	200VA AC 45W DC	250 AC	3A	0.8A	100,000 min.
				30 DC	3A	1.5A	100,000 min.
				110 DC	0.44A	0.22A	100,000 min.

Note 1: On 4PDT relays, the maximum allowable total current of
neighboring two poles is 6 A . At the rated load, make sure that the
total current of neighboring two poles does not exceed $6 A(3 A+3 A$ $=6 A$).
Note 2: Inductive load for the rated load $-\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

UL and c-UL Ratings

Voltage	Resistive			General Use			Horse Power Rating		
	RU2	RU4	RU42	RU2	RU4	RU42	RU2	RU4	RU42
250V AC	$10 A$	-	-	-	$6 A$	$3 A$	-	$1 / 10 H P$	-
30V DC	$10 A$	$6 A$	$3 A$	-	-	-	-	-	-

CSA Ratings

Voltage	Resistive								
	RU2	RU4	RU42	RU2	RU4	RU42	RU2	RU4	RU42
250V AC	10 A	-	-	-	$6 A$	$3 A$	-	$1 / 10 \mathrm{HP}$	-
30V DC	10A	6 A	$3 A$	-	-	-	-	-	-

TÜV Ratings

Voltage	Resistive			Inductive		
	RU2	RU4	RU42	RU2	RU4	RU42
250V AC	10 A	6 A	3 A	5 A	0.8 A	0.8 A
30V DC	10 A	6 A	3 A	5 A	1.5 A	1.5 A

Surge Suppressor Ratings

Type		Ratings
AC Coil	With RC	RC series circuit R: 20 k $\Omega, \mathrm{C}: 0.033 \mu \mathrm{~F}$
DC Coil	With Diode	Diode reverse voltage: 1000V Diode forward current: 1 A

Specifications

Model	RU2 (DPDT)	RU4 (4PDT)	RU42 (4PDT)
Contact Material	Silver alloy	Silver (gold clad)	Silver-nickel (gold clad)
Contact Resistance $* 1$	$50 \mathrm{~m} \Omega$ maximum		
Minimum Applicable Load *2	(reference value)		
Operate Time *3	20 ms maximum		
Release Time *3	20 ms maximum		
Power Consumption	AC: 1.1 to $1.4 \mathrm{VA}(50 \mathrm{~Hz}), 0.9$ to $1.2 \mathrm{VA}(60 \mathrm{~Hz})$ DC: 0.9 to 1.0 W		
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)		
	Between contact and coil: 2500 V AC, 1 minute		
Dielectric Strength	Between contacts of different poles: 2500 V AC, 1 minute $2000 \mathrm{~V} \mathrm{AC}, 1$ minute		
	Between contacts of the same pole: 1000 V AC, 1 minute		
Operating Frequency	Electrical: 1800 operations/h maximum Mechanical: 18,000 operations/h maximum		
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.5 mmOperating extremes: 10 to 55 Hz , amplitude 0.5 mm		
Shock Resistance	Damage limits: $\quad 1000 \mathrm{~m} / \mathrm{s}^{2}$Operating extremes: $150 \mathrm{~m} / \mathrm{s}^{2}$		
Mechanical Life	AC: 50,000,000 operations DC: 100,000,000 operations		$50,000,000$ operations
Electrical Life	See page 27 and 29.		
Operating Temperature *4	PCB terminal: -55 to $+70^{\circ} \mathrm{C}$ (no freezing) Others: $\quad-55$ to $+60^{\circ} \mathrm{C}$ (no freezing)		
Operating Humidity	5 to 85\% RH (no condensation)		
Storage Temperature	-55 to $+70^{\circ} \mathrm{C}$ RH (no freezing)		
Storage Humidity	5 to 85\% RH (no condensation)		
Weight	Approx. 35 g		

Note: Above values are initial values

*1: Measured using 5V DC, 1A voltage drop method
*2. Measured at operating frequency of 120 operations/min (failure rate level P, reference value)
$* 3$: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing;
Release time of AC relays with RC: 25 ms maximum
Release time of AC relays with RC:
Release time of DC relays with diode: 40 ms maximum
*4: Measured at the rated voltage.

RU Series Universal Relays

RU2 (DPDT Contact)

Plug-in Terminal

PCB Terminal

- Marking plate is a standard provision.
- Not provided with an LED indicator, mechanical flag indicator, and manual latching lever.

제 자 웅
Photo: RU2V-NF-A100

Dimensions

RU2S

RU2S-C/RU2S-NF

Marking plate removal slot is provided only on one side.
Insert a flat screwdriver into the slot to remove the marking plate.

RU2V

All dimensions in mm.

Internal Connection (Bottom View)

RU2S-* Standard

RU2S-*R With RC

RU2S-*D With Diode

Over 24V DC

[^0]Electrical Life Curves

RU2 (Inductive Load)

Maximum Switching Current
RU2

Ambient Temperature vs. Temperature Rise Curves

The above temperature rise curves show the characteristics when 100% the rated coil voltage is applied
The heat resistance of the coil is $120^{\circ} \mathrm{C}$. The slant dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.

RU Series Universal Relays

RU4 (4PDT Contact)

Plug-in Terminal

- LED indicator, mechanical flag indicator, and marking plate are standard provisions, except on simple types - Available with or without a manual latching lever

젱․ C C

PCB Terminal

Dimensions

RU4S/RU42S

RU4S-C/RU4S-NF
RU42S-C/RU42S-NF

RU4V/RU42V

Mounting Hole Layout

Marking plate removal slot is provided only on one side.
Insert a flat screwdriver into the slot to remove the marking plate.

Internal Connection (Bottom View)

RU4S-*/RU42S-*
Standard

$24 \mathrm{~V} \mathrm{AC/DC}$ or less

Over 24V AC/DC

RU4S-*R/RU42S-*R With RC

RU4S-*D/RU42S-*D With Diode

Over 24V DC

RU Series Universal Relays

RU42 (Resistive Load)

RU4 (Inductive Load)

RU42 (Inductive Load)

Maximum Switching Current

Ambient Temperature vs. Temperature Rise Curves

RU4/RU42 (AC Coil, 50 Hz)

RU4/RU42 (AC Coil, 60 Hz)

RU4/RU42 (DC Coil)

[^1]RU Series Universal Relays

Applicable Socket

Package quantity: 1

Note 1: Finger-safe cannot be used with ring terminal.
Note 2: SU2S-11L and SU4S-11L are spring-clamp socket which does not require tightening screws. Stranded wire, solid wire, and ferrule can be attached using a screwdriver.
Note 3: When using SU2S-11L and SU4S-11L at rated current 8A and above, maintain at least 10 mm distance from the adjacent SU socket.
Note 4: Front wiring socket can be mounted directly on DIN rail and mounting panel (some sockets need spacers for the ends).

RU Series Universal Relays
Hold-down Springs

Style	Shape	Material	Part No.	Ordering No.	Package Quantity
Wire Spring		Stainless Steel	SY4S-51F1	SY4S-51F1PN10	10
Leaf Spring			SFA-101	SFA-101PN20	10 pairs
			SFA-202	SFA-202PN20	
			SFA-301	SFA-301PN20	
			SFA-302	SFA-302PN20	
			SFA-502	SFA-502PN20	
			SFA-503	SFA-503PN20	
			SFA-504	SFA-504PN10	10

Note 1: A relay needs a pair of leaf springs, except for SFA-504 (one spring per relay).
Note 2: When the wire spring SY4S-51F1 or leaf Spring SFA-504 is used on a relay with latching lever, lever cannot be opened or closed.
Note 3: Leaf springs (except for the leaf spring SFA-504) cannot be removed after being installed on a socket (except for SM2S-05D and SY4S-05D)
Accessories for Sockets

Name	Shape	Specifications	Part No.	Ordering No.	Package Quantity	Remarks
DIN Rail		Aluminum Weight: Approx. 200g	BAA1000	BAA1000PN10	10	Length: 1 m Width: 35 mm
		Steel Weight: Approx. 320g	BAP1000	BAP1000PN10	10	
End Clip	${ }^{4}$	Zinc-plated steel Weight: Approx. 15g	BNL5	BNL5PN10	10	Used on a DIN rail to fasten relay sockets
			BNL6	BNL6PN10	10	
Applicable Screwdriver		Weight: 20g (approx.)	BC1S-SD0	BC1S-SD0	1	Used for spring clamp connection (SU2S, SU4S sockets)
DIN Rail Spacer	E	Plastic (black)	SA-406B	SA-406B	1	Thickness: 5 mm Used for adjusting spacing between sockets mounted on a DIN rail
End Spacer			SA-203B	SA-203B	1	Used for mounting DIN rail
Intermediate Spacer			SA-204B	SA-204B	1	panel surface
Jumper		Brass jumper with ABS sheath Rated current: 3A Weight: Approx. 3g	SU9Z-J5	SU9Z-J5PN10	10	Used for interconnecting relay coil terminals on a maximum of five SU sockets; can be cut to required lengths
Jumper			SM9Z-JF2	SM9Z-JF2PN10	10	Used for interconnecting relay coil terminals on SM2S-05DF sockets; can be cut to required length. No. of sockets: SM9Z-JF2: 2 SM9Z-JF5: 5 SM9Z-JF8: 8
			SM9Z-JF5	SM9Z-JF5PN10		
			SM9Z-JF8	SM9Z-JF8PN10		
			SY9Z-JF2	SY9Z-JF2PN10		Used for interconnecting relay coil terminals on SY4S-05DF sockets; can be cut to required length SY9Z-JF2: 2 SY9Z-JF5: 5 SY9Z-JF8: 8
			SY9Z-JF5	SY9Z-JF5PN10		
			SY9Z-JF8	SY9Z-JF8PN10		

RU Series Universal Relays

Instructions

- Before operating the latching lever, turn off the power to the RU relay. After checking the circuit, return the latching lever to the original position.
- Do not use the latching lever as a switch.
- The durability of the latching lever is a minimum of 100 operations. - When using DC loads on 4PDT relays, apply a positive voltage to terminals of neighboring poles and a negative voltage to the other terminals of neighboring poles to prevent the possibility of short circuits.
- DC relays with a diode have a polarity in the coil terminals.
- The surge absorbing element on AC relays with RC or DC relays with diode is provided to absorb the counter electromotive force generated by the coil. When the relay is subject to an excessive external surge voltage, the surge absorbing element may be damaged. Add another surge absorbing provision to the relay to prevent damage.

Safety Precautions

1. Notes on soldering

- When mounting 2 or more relays on a PC board, keep a minimum spacing of 5 mm in each direction.
- Manual soldering: Solder the terminals at $350^{\circ} \mathrm{C}$ within 3 sec ., using a soldering iron of 60W ($\mathrm{Sn}-\mathrm{Ag}-\mathrm{Cu}$ is recommended when using lead-free solder).
- Auto-soldering: Solder at $250^{\circ} \mathrm{C}$ within 4 to 5 sec.
- Use a non-corrosive resin flux.

2. Color coding of coil voltage

Coil Voltage	Color
24 V AC	White
100-110V AC	Clear
110-120V AC	Blue
200-220V AC	Black
220-240V AC	Red
24V DC	Green
6V DC	Voltage marking on yellow tape
12 V DC	
48 V DC	
100V DC	
110 V DC	

RY Series Miniature Relays

DPDT and 4PDT contacts (3A)

Bifurcated contacts are also available

The RY series are general purpose miniature relays with a 3A contact capacity. A wide variety of terminals styles and coil voltages meet a wide range of applications. All 4PDT have arc barriers. The 4PDT also available with reverse polarity diode and LED.

Applicable Standards	Mark	Certification Organization/ File No.
UL508	CN	UL recognized, File No. E55996
CSA C22.2 No. 14	CSA File No. LR35144	
EN61810-1	TUV	TÜV SÜD
		EU Low Voltage Directive

Plug-in Terminal

Terminal	Style	DPDT		4PDT	
		Part No.	Coil Voltage Code *	Part No.	Coil Voltage Code *
Standard	Basic	RY2S-U* \quad *	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, D24, DC48, DC100, DC110	RY4S-U* \quad *	AC6, AC12, AC24, AC50, AC100-110, AC110-120, AC200-220, AC220-240 DC6, DC12, DC24, DC48, DC100-110
	With Indicator	RY2S-UL* \star		RY4S-UL* \quad *	
	With Reverse Polarity Indicator	-		RY4S-UL1* *	
	With Check Button	-		RY4S-UC* \quad *	
	With Indicator and Check Button	-		RY4S-ULC* *	
	Top Bracket Mounting	RY2S-UT* \star		RY4S-UT* \quad *	
	With Diode (DC coil only)	RY2S-UD* *	$\begin{aligned} & \text { DC6, DC12, DC24, DC48, } \\ & \text { DC100, DC110 } \end{aligned}$	RY4S-UD* \quad *	DC6, DC12, DC24, DC48, DC100-110
	With Reverse Polarity Diode (DC coil only)	-		RY4S-UD1*	
	With Indicator and Diode (DC coil only)	RY2S-ULD*		RY4S-ULD* ${ }^{\text {* }}$	
	With Indicator and Reverse Polarity Diode (DC coil only)	-		RY4S-UL1D1*	

PC Board Terminal

Terminal	Style	DPDT		4PDT	
		Part No.	Coil Voltage Code *	Part No.	Coil Voltage Code *
Standard	Standard	RY2V-U* \quad *	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, DC6, DC12, DC24, DC48	RY4V-U* *	AC6, AC12, AC24, AC50, AC100-110, AC110-120, AC200-220, AC220-240 DC6, DC12, DC24, DC48, DC100-110
	With Indicator	RY2V-UL* *		RY4V-UL* *	
	With Diode (DC coil only)	RY2V-UD* ${ }^{\text {® }}$	DC6, DC12, DC24, DC48, DC100, DC110	-	-

Part numbers marked with \star in the tables above are UL-recognized, CSA-certified, and TÜV-approved.

Part No. Development

When ordering, specify the Part No. and coil voltage code.

RY Series Miniature Relays

Coil Ratings

Rated Voltage (V)			Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$				Coil Resistance (Ω)$\pm 10 \% \text { at } 20^{\circ} \mathrm{C}$		Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)		
			50 Hz		60 Hz				Max. Continuous Applied Voltage	Min. Pickup Voltage	Dropout Voltage
	DPDT	4PDT	DPDT	4PDT	DPDT	4PDT	DPDT	4PDT			
N	6	6	170	240	150	200	18.8	9.34	110\%	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$	$\begin{aligned} & 30 \% \\ & \text { minimum } \end{aligned}$
	12	12	86	121	75	100	76.8	39.3			
	24	24	42	60.5	37	50	300	152			
	50	50	20.5	28.9	18	24	1,280	676			
	100	100-110	10.5	10.3-11.8	9	9.1-10.0	5,220	3,360			
	110	-	9.6	-	8.4	-	6,950	-			
	115	110-120	8.9	9.4-10.8	7.8	8.0-9.2	7,210	4,290			
	120	-	8.6	-	7.5	-	8,100	-			
	200	200-220	5.6	5.1-5.9	4.9	4.3-5.0	21,442	13,690			
	220	-	4.7	-	4.1	-	25,892	-			
	230	220-240	4.7	4.7-5.4	4.1	4.0-4.6	26,710	18,820			
	240	-	4.9	-	4.3	-	26,710	-			
0	DPDT	4PDT	DPDT		4PDT		DPDT	4PDT	110\%	$\begin{aligned} & 80 \% \\ & \text { maximum } \end{aligned}$	$\begin{aligned} & 10 \% \\ & \text { minimum } \end{aligned}$
	6	6	128		150		47	40			
	12	12	64		75		188	160			
	24	24	32		36.9		750	650			
	48	48	18		18.5		2,660	2,600			
	100	100-110	10		8.2-9.0		10,000	12,250			
	110	-	8		-		13,800	-			

Contact Ratings

Maximum Contact Capacity						
Contact	ContinuousCurrent	Allowable Contact Power		Rated Load		
		Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load
Standard Contact DPDT 4PDT	3A	660 VA AC90 W DC	176 VA AC 45W DC	110 V AC	3A	1.5A
				220 V AC	3A	0.8A
				30 V DC	3A	1.5A

Note: Inductive load for the rated load $-\cos \varnothing=0.3, \mathrm{~L} / \mathrm{R}=7 \mathrm{~ms}$

Standard Ratings

RY2
UL Ratings (Standard Contact)

Voltage	Resistive	General use
240 V AC	3 A	0.8 A
120 V AC	-	1.5 A
100 V DC	0.2 A	0.2 A
30 V DC	3 A	3 A

CSA Ratings (Standard Contact)

Voltage	Resistive	General use
240 V AC	3 A	0.8 A
120 V AC	3 A	1.5 A
100 V DC	-	0.2 A
30 V DC	3 A	1.5 A

TÜV Ratings (Standard Contact)

240 V AC	3 A
30 V DC	3 A

AC $\cos =1.0$, DC L/R=0ms

RY4
UL Ratings (Standard Contact)

Voltage	Resistive	General use
240 V AC	5 A	5 A
100 V DC	0.2 A	0.2 A
30 V DC	5 A	5 A

CSA Ratings (Standard Contact)

Voltage	Resistive	General use
240 V AC	5 A	5 A
100 V DC	-	0.2 A
30 V DC	5 A	1.5 A

TÜV Ratings (Standard Contact)

240 V AC	5 A
30 V DC	5 A

$A C \cos =1.0$ DC L/R=0ms

RY Series Miniature Relays

Specifications

Contact	Standard Contact	
	DPDT	4PDT
Contact Material	Gold-plated silver	
Contact Resistance *1	$50 \mathrm{~m} \Omega$ maximum	
Minimum Applicable Load	5 V DC, 10 mA (reference value)	1V DC, 1 mA (reference value)
Operate Time *2	20 ms maximum	
Release Time *2	20 ms maximum	
Power Consumption (approx.)	$\begin{aligned} & \text { AC: } 1.1 \mathrm{VA}(50 \mathrm{~Hz}), 1 \mathrm{VA}(60 \mathrm{~Hz}) \\ & \text { DC: } 0.8 \mathrm{~W} \end{aligned}$	$\begin{aligned} & \text { AC: } 1.4 \mathrm{VA}(50 \mathrm{~Hz}), 1.2 \mathrm{VA}(60 \mathrm{~Hz}) \\ & \text { DC: } 0.9 \mathrm{~W} \end{aligned}$
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Dielectric Strength	Between live and dead parts: 1500 V AC, 1 minute Between contact and coil: 1500V AC, 1 minute $* 3$ Between contacts of different poles: 1500 V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute	Between live and dead parts: 2000V AC, 1 minute Between contact and coil: 2000V AC, 1 minute Between contacts of different poles: 2000 V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Operating Frequency	Electrical: 1,800 operations/h maximum Mechanical: 18,000 operations/h maximum	
Vibration Resistance	Damage limits: $\quad 10$ to 55 Hz , amplitude 0.5 mmOperating extremes: 10 to 55 Hz , amplitude 0.5 mm	
Shock Resistance	Damage limits: $\quad 1,000 \mathrm{~m} / \mathrm{s}^{2}$Operating extremes: $100 \mathrm{~m} / \mathrm{s}^{2}$ (DPDT), $200 \mathrm{~m} / \mathrm{s}^{2}$ (4PDT)	
Mechanical Life	50,000,000 operations	
Electrical Life	200,000 operations (220V AC, 3A)	
Operating Temperature $* 4$	-25 to $+50^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	45 to 85\% RH (no condensation)	
Storage Temperature	-55 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Storage Humidity	45 to 85\% RH (no condensation)	
Weight (approx.)	23 g	34 g

Note: Above values are initial values.
*1: Measured using 5V DC, 1A voltage drop method
*2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing Release time of relays with diode: 40 ms maximum
*3: Relays with indicator or diode: 1000 V AC, 1 minute
*4: For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve.
The operating temperature range of relays with indicator or diode is -25 to $+40^{\circ} \mathrm{C}$.

Characteristics (Reference Data)
Maximum Switching Capacity
(RY2)
(RY4)

Continuous Load Current vs. Operating Temperature Curve (Basic, With Check Button, and Top Bracket Mounting)
(RY2)

(RY4) 1

RY Series Miniature Relays

Internal Connection (Bottom View)

Contacts can be operated by pressing the check button. Press the button quickly to prevent arcing.
| With Indicator (-UL1)
(reverse polarity)

With Indicator and Diode (-UL1D1) (reverse polarity)

Below
$24 V$ DC

24V DC
24V DC
and over 24 V
and over

This type contains a diode to absorb the counter emf generated when the coil is deenergized. The release time is slightly longer.

- Diode Characteristics

Reverse withstand voltage: 1,000V
Forward current: 1A

RY Series Miniature Relays
Dimensions
Plug-in Terminal RY2S-U/RY2S-UL RY2S-UD

멩 © (1
RY4S-U/RY4S-UL/RY4S-UD/RY4S-ULD/ RY4S-UL1/RY4S-UD1/RY4S-UL1D1

Applicable Socket and Hold-down Spring

Socket		Hold-down Spring
Mounting Style	Part No.	
DIN Rail Mount Socket	SY2S-05*	SFA-101 SFA-202
Panel Mount Socket	SY2S-51	SY4S-51F1 SFA-301
PC Board Mount Socket	SY2S-61	SFA-302

Applicable Socket and Hold-down Spring

Socket		Hold-down Spring
Mounting Style	Part No.	SFA-101
DIN Rail Mount Socket	SY4S-05*	SFA SFA-202 SFA-502
Panel Mount Socket	SY4S-51	SY4S-51F1 SFA-301
PC Board Mount Socket	SY4S-61	SFA-302 (SY4S-02F1)

- (SY4S-02F1) is for the relay with check button.

PC Board Terminal

 RY2V-U/RY2V-UL/RY2V-UD

Top Bracket Mounting (Plug-in Terminal)

RM series Miniature Relays

DPDT contacts (5A)

Plug-in and PC board terminal styles

- Compact miniature size saves space
- Options include indicators and check buttons.

Standard	Mark	Certification Organization/ File No.
UL508	UA	UL recognized, File No. E55996
CSA C22.2 No. 14	CSA File No. LR35144	
EN61810-1	TUV	TÜV SÜD
	EU Low Voltage Directive	

Style	Plug-in Terminal		PC Board Terminal		
	Part No.	Coil Voltage Code *	Part No		Coil Voltage Code *
Basic	RM2S-U* \quad *	AC6, AC12, AC24, AC50, AC100-110, AC110-120, AC200-220, AC220-240 DC6, DC12, DC24, DC48, DC100-110	RM2V-U*	*	AC6, AC12, AC24, AC50, AC100-110, AC110-120, AC200-220, AC220-240 DC6, DC12, DC24, DC48, DC100-110
With Indicator	RM2S-UL*		RM2V-UL*	*	
With Check Button	RM2S-UC* *		-		-
Top Bracket Mounting	RM2S-UT* $*$		-		-
With Diode (DC coil only)	RM2S-UD* *	DC6, DC12, DC24, DC48, DC100-110	-		-
With Indicator and Diode (DC coil only)	RM2S-ULD* *		-		-

Part numbers marked with \star in the table above are UL-recognized, CSA-certified, and TÜV-approved.

Part No. Development

When ordering, specify the Part No. and coil voltage code.

$$
\text { (Example) } \frac{\text { RM2S-U }}{\text { Part No. }}
$$

AC100-110
\square Coil Voltage Code

Coil Ratings

Rated Voltage (V)		Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$		$\begin{gathered} \text { Coil Resistance }(\Omega) \\ \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{gathered}$	Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)		
		50 Hz	60 Hz		Max. Continuous Applied Voltage	Min. Pickup Voltage	Dropout Voltage
N 0 0 0 0 4	6	240	200	9.4	110\%	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$	30% minimum
	12	121	100	39.3			
	24	60.5	50	153			
	50	28.9	24	680			
	100-110	10.3-11.8	9.1-10.0	3,360			
	110-120	9.4-10.8	8.2-9.2	4,290			
	200-220	5.1-5.9	4.3-5.0	13,690			
	220-240	4.7-5.4	4.0-4.6	18,820			
0	6	150		40	110\%	$\begin{aligned} & 80 \% \\ & \text { maximum } \end{aligned}$	$\begin{aligned} & 10 \% \\ & \text { minimum } \end{aligned}$
	12	75		160			
	24	37.5		640			
	48	18.8		2,560			
	100-110	8.2-9.0		12,250			

RM Series Miniature Relays

Contact Ratings

Maximum Contact Capacity					
Continuous Current	Allowable Contact Power		Rated Load		
	Resistive Load	Inductive Load	Voltage	Res. Load	Ind. Load
5A	1100VA AC 150W DC	440VA AC 75W DC	110 V AC	5 A	2.5A
			220 V AC	5A	2A
			30 V D	5A	2.5A

Note: Inductive load for the rated load - $\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

UL Ratings

Voltage	Resistive	General use
240 V AC	5 A	2 A
120 V AC	-	2.5 A
100 V DC	0.4 A	-
30 V DC	5 A	-

CSA Ratings

Voltage	Resistive	General use
240 V AC	5 A	2 A
120 V AC	5 A	2.5 A
100 V DC	-	0.4 A
30 V DC	5 A	2.5 A

TÜV Ratings

240 V AC	5 A
30 V DC	5 A

Note: AC: $\cos \varnothing=1.0, D C: L / R=0 \mathrm{~ms}$

Specifications

Contact Material	Silver
Contact Resistance	$30 \mathrm{~m} \Omega$ maximum *1
Minimum Applicable Load	5 V DC, 1 mA (reference value)
Operate Time	20 ms maximum *2
Release Time	20 ms maximum *2
Power Consumption (approx.)	$\begin{aligned} & \text { AC: } 1.4 \mathrm{VA}(50 \mathrm{~Hz}), 1.2 \mathrm{VA}(60 \mathrm{~Hz}) \\ & \text { DC: } 0.9 \mathrm{~W} \end{aligned}$
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	Between live and dead parts: 2000 V AC, 1 minute Between contact and coil: 2000V AC, 1 minute Between contacts of different poles: 2000 V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Operating Frequency	Electrical: 1,800 operations $/ \mathrm{h}$ maximum Mechanical: 18,000 operations $/ \mathrm{h}$ maximum
Temperature Rise	Coil: $85^{\circ} \mathrm{C}$ maximum, Contact: $65^{\circ} \mathrm{C}$ maximum
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.5 mm Operating extremes: 10 to 55 Hz , amplitude 0.5 mm
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$ Operating extremes: $200 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical Life	50,000,000 operations
Electrical Life	500,000 operations (220V AC, 5A)
Operating Temperature	-25 to $+45^{\circ} \mathrm{C}$ (no freezing) $* 4$
Operating Humidity	45 to 85% RH (no condensation)
Storage Temperature	-55 to $+70^{\circ} \mathrm{C}$ (no freezing) $* 4$
Storage Humidity	45 to 85\% RH (no condensation)
Weight (approx.)	35 g

Note: Above values are initial values.
*1: Measured using 5V DC, 1A voltage drop method
*2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing Release time of relays with diode: 40 ms maximum
3: Relays with indicator or diode: 1000 V AC, 1 minute
*4: For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve. The operating temperature range of relays with indicator or diode is -25 to $+40^{\circ} \mathrm{C}$.

Characteristics (Reference Data)

Maximum Switching Capacity

Electrical Life Curve

Continuous Load Current vs. Operating Temperature Curve (Basic, With Check Button, and Top Bracket Mounting)

RM Series Miniature Relays

Internal Connection (Bottom View)

Basic (-U, UT)
With Indicator (-UL)
Below 24 V AC/DC

Dimensions

Plug-in (Solder Terminal) RM2S-U/RM2S-UL RM2S-UD/RM2S-ULD

Applicable Socket and Hold-down Spring
Socket Hold-down Spring Mounting Style Part No. DIN Rail Mount Socket SM2S-05* SFA-101 SFA-202 SFA-502 Panel Mount Socket SM2S-51 SY4S-51F1 (SY4S-02F1) PC Board Mount Socket SM2S-61 SFA-301 SFA-302

Note: (SY4S-02F1) is for the relay with check
button.

이웅

PC Board Terminal
RM2V-U/RM2V-UL

Top Bracket Mounting (Solder Terminal) RM2S-UT

제웅

RH series Power Relays

SPDT through 4PDT, 10A contacts Midget power relays

The RH series are miniature power relays with a large capacity. The RH relays feature 10A contact capacity as large as the RR series and the same size as IDEC's miniature relays. The compact size saves space.

Standard	Mark	Approval Organization / File No.
UL508	π	UL recognized, File No. E55996 No. E66043
CSA C22.2 No. 14	(18)	CSA File No. LR35144
EN61810-1	(vi)	TÜV SÜD
	CE	EU Low Voltage Directive

Termination	Style	SPDT		DPDT	
		Part No.	Coil Voltage Code *	Part No.	Coil Voltage Code *
Plug-in Terminal	Basic	$\begin{aligned} & \text { RH1B-U* } \\ & \text { RH1B-UW* } \end{aligned}$	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, DC24, DC48, DC100, DC110	$\begin{aligned} & \text { RH2B-U* } \\ & \text { RH2B-UW* } \end{aligned}$	AC6, AC12, AC24, AC50, AC100-110, AC110-120, AC200-220, AC220-240 DC6, DC12, DC24, DC48, DC100-110
	With Indicator	$\begin{array}{\|l\|} \hline \text { RH1B-UL* } \\ \text { RH1B-ULW* } \\ \hline \end{array}$		$\begin{array}{\|l\|} \hline \text { RH2B-UL* } \\ \text { RH2B-ULW* } \end{array}$	
	With Check Button	-		RH2B-UC*	
	With Indicator and Check Button	-		RH2B-ULC*	
	Top Bracket Mounting	RH1B-UT* RH1B-UTW*		$\begin{aligned} & \text { RH2B-UT* } \\ & \text { RH2B-UTW* } \end{aligned}$	
	With Diode (DC coil only)	RH1B-UD* RH1B-UDW*	DC6, DC12, DC24, DC48, DC100, DC110	$\begin{aligned} & \text { RH2B-UD* } \\ & \text { RH2B-UDW* } \end{aligned}$	DC6, DC12, DC24, DC48, DC100-110
	With Indicator and Diode (DC coil only)	RH1B-ULD* RH1B-ULDW*	-	$\begin{aligned} & \text { RH2B-ULD* } \\ & \text { RH2B-ULDW* } \end{aligned}$	
PC Board Terminal	Basic	RH1V2-U* RH1V2-UW*	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, DC24, DC48, DC100, DC110	$\begin{aligned} & \text { RH2V2-U* } \\ & \text { RH2V2-UW* } \end{aligned}$	AC6, AC12, AC24, AC50, AC100-110, AC110-120, AC200-220, AC220-240 DC6, DC12, DC24, DC48, DC100-110
	With Indicator	-	-	$\begin{aligned} & \text { RH2V2-UL* } \\ & \text { RH2V2-ULW* } \end{aligned}$	
	With Diode (DC coil only)	RH1V2-UD* RH1V2-UDW*	$\begin{aligned} & \text { DC6, DC12, DC24, DC48, } \\ & \text { DC100 } \end{aligned}$	$\begin{aligned} & \text { RH2V2-UD* } \\ & \text { RH2V2-UDW* } \end{aligned}$	$\begin{aligned} & \text { DC6, DC12, DC24, DC48, } \\ & \text { DC100-110 } \end{aligned}$

- Part number ending with W is cadmium free.

Part No. Development

When ordering, specify the Part No. and coil voltage code.

RH Series Power Relays

Termination	Style	3PDT		4PDT	
		Part No.	Coil Voltage Code *	Part No.	Coil Voltage Code *
Plug-in Terminal	Basic	$\begin{array}{\|l\|} \hline \text { RH3B-U* } \\ \text { RH3B-UW* } \\ \hline \end{array}$	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, DC24, DC48, DC100, DC110	$\begin{aligned} & \text { RH4B-U* } \\ & \text { RH4B-UW* } \\ & \hline \end{aligned}$	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, DC24, DC48, DC100, DC110
	With Indicator	RH3B-UL*		$\begin{array}{\|l\|} \hline \text { RH4B-UL* } \\ \text { RH4B-ULW* } \end{array}$	
	With Check Button	RH3B-UC*		RH4B-UC*	
	With Indicator and Check Button	RH3B-ULC*		RH4B-ULC*	
	Top Bracket Mounting	$\begin{aligned} & \text { RH3B-UT* } \\ & \text { RH3B-UTW* } \end{aligned}$		RH4B-UT* RH4B-UTW*	
	With Diode (DC coil only)	RH3B-D* (Note) RH3B-DW* (Note)	DC6, DC12, DC24, DC48, DC100, DC110	$\begin{aligned} & \text { RH4B-UD* } \\ & \text { RH4B-UDW* } \end{aligned}$	DC6, DC12, DC24, DC48, DC100, DC110
	With Indicator and Diode (DC coil only)	RH3B-LD* (Note) RH3B-LDW* (Note)		RH4B-ULD* RH4B-ULDW*	
PC Board Terminal	Basic	$\begin{aligned} & \text { RH3V2-U* } \\ & \text { RH3V2-UW* } \end{aligned}$	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, DC24, DC48, DC100, DC110	$\begin{aligned} & \text { RH4V2-U* } \\ & \text { RH4V2-UW** } \end{aligned}$	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240 DC6, DC12, DC24, DC48, DC100, DC110
	With Indicator	RH3V2-UL* RH3V2-ULW*		$\begin{aligned} & \text { RH4V2-UL* } \\ & \text { RH4V2-ULW* } \end{aligned}$	
	With Diode (DC coil only)	RH3V2-D* (Note) RH3V2-DW* (Note)	DC6, DC12, DC24, DC48, DC100, DC110	RH4V2-UD* RH4V2-UDW	DC6, DC12, DC24, DC48, DC100, DC110
	With Indicator and Diode (DC coil only)	RH3V2-LD* (Note) RH3V2-LDW* (Note)		$\begin{array}{\|l\|} \hline \text { RH4V2-ULD* } \\ \text { RH4V2-ULDW* } \end{array}$	

Note: No standard approval.

- Part number ending with W is cadmium free.

Part No. Development

When ordering, specify the Part No. and coil voltage code.

| (Example) $\frac{\text { RH3B-U }}{\text { Part No. }} \quad$ | AC110 |
| :--- | :--- | :--- |
| | \quad Coil Voltage Code |

Coil Ratings

Contact Ratings

Maximum Contact Capacity						
Contact	Continuous Current	Allowable Contact Power		Rated Load		
		Resistive Load	Inductive Load	Voltage (V)	Res. Load	Ind. Load
SPDT	10A	1540VA AC 300W DC	990VA AC 210W DC	110 AC	10A	7A
				220 AC	7A	4.5A
				30 DC	10A	7A
$\begin{aligned} & \text { DPDT } \\ & \text { 3PDT } \\ & \text { 4PDT } \end{aligned}$	10A	1650VA AC 300W DC	1100VA AC 225W DC	110 AC	10A	7.5A
				220 AC	7.5A	5A
				30 DC	10A	7.5A

Note: Inductive load for the rated load - $\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

UL Ratings (silver cadmium oxide)

Voltage	Resistive			General use			Horse Power Rating		
	RH1 RH2	RH3	RH4	RH1 RH2	RH3	RH4	RH1 RH2	RH3	RH4
	10 A	7.5 A	7.5 A	7 A	6.5 A	5 A	$1 / 3 \mathrm{HP}$	$1 / 3 \mathrm{HP}$	-
120V AC	-	10 A	10 A	-	7.5 A	7.5 A	$1 / 6 \mathrm{HP}$	$1 / 6 \mathrm{HP}$	-
30V DC	10 A	10 A	-	7 A	-	-	-	-	-
28V DC	-	-	10 A	-	-	-	-	-	-

UL Ratings (cadmium free)

| Voltage | Resistive | | | | General use | | | Horse Power Rating | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | RH1
 RH2 | RH3 | RH4 | RH1
 RH2 | RH3 | RH4 | RH1
 RH2 | RH3 | RH4 |
| | $10 A$ | $1 / 3 \mathrm{HP}$ | $1 / 3 \mathrm{HP}$ | - |
| 120V AC | - | - | - | - | - | - | $1 / 6 \mathrm{HP}$ | $1 / 6 \mathrm{HP}$ | - |
| 30V DC | $10 A$ | $10 A$ | $10 A$ | $7 A$ | - | - | - | - | - |

CSA Ratings (Silver cadmium oxide/cadmium free)

Voltage	Resistive				General use				Horse Power Rating
	RH1	RH2	RH3	RH4	RH1	RH2	RH3	RH4	RH1, 2, 3
240V AC	10A	10A	10A	10A	7A	7A	7A	5A	$1 / 3 \mathrm{HP}$
120V AC	10A	10A	10A	10A	7.5A	7.5A	-	7.5A	1/6 HP
30V DC	10A	10A	10A	10A	7A	7.5A	-	-	-

TÜV Ratings (silver cadmium oxide/cadmium free)

Voltage	RH1	RH2	RH3	RH4
240 V AC	10 A	10 A	7.5 A	7.5 A
30 V DC	10 A	10 A	10 A	10 A

$A C: \cos \varnothing=1.0, D C: L / R=0 \mathrm{~ms}$

Specifications

Contact Material		Silver cadmium oxide/cadmium free (Ag-alloy)
Contact Resistance *1		$50 \mathrm{~m} \Omega$ maximum
Minimum Applicable Load		24 V DC, 30 mA ; 5 V DC, 100 mA (reference value)
Operate Time *2	SPDT/DPDT	20 ms maximum
	3PDT/4PDT	25 ms maximum
Release Time *2	SPDT/DPDT	20 ms maximum
	3PDT/4PDT	25 ms maximum
Power Consumption (approx.)	SPDT	AC: $1.1 \mathrm{VA}(50 \mathrm{~Hz}), 1 \mathrm{VA}(60 \mathrm{~Hz}), \mathrm{DC}: 0.8 \mathrm{~W}$
	DPDT	AC: 1.4 VA (50 Hz), 1.2 VA (60 Hz), DC: 0.9 W
	3PDT	AC: $2 \mathrm{VA}(50 \mathrm{~Hz}), 1.7 \mathrm{VA}(60 \mathrm{~Hz})$, DC: 1.5 W
	4PDT	AC: $2.5 \mathrm{VA}(50 \mathrm{~Hz})$, $2 \mathrm{VA}(60 \mathrm{~Hz})$, DC: 1.5 W
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500 V DC megger)
Dielectric Strength	SPDT	Between live and dead parts: $\quad 2000 \mathrm{~V} \mathrm{AC}, 1$ minute $* 3$ Between contact and coil: 2000 V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
	DPDT/3PDT/4PDT	Between live and dead parts: $\quad 2000 \mathrm{~V}$ AC, 1 minute Between contact and coil: 2000 AC AC, 1 minute Between contacts of different poles: 2000 V AC, 1 minute Between contacts of the same pole: 1000 V AC, 1 minute
Operating Frequency		Electrical: 1,800 operations $/ \mathrm{h}$ maximum Mechanical: 18,000 operations $/ \mathrm{h}$ maximum
Vibration Resistance		Damage limits: 10 to 55 Hz , amplitude 0.5 mm Operating extremes: 10 to 55 Hz , amplitude 0.5 mm
Shock Resistance		
Mechanical Life		50,000,000 operations minimum
Electrical Life	DPDT	Silver cadmium oxide contact: 500,000 operations minimum (110V AC, 10A) Cadmium free (Ag-alloy) contact: 300,000 operations minimum
	SPDT/3PDT/4PDT	200,000 operations minimum (110V AC, 10A)
Operating Temperature	SPDT	-25 to $+50^{\circ} \mathrm{C}$ (no freezing)
	DPDT/3PDT/4PDT	-25 to $+40^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		45 to 85\% RH (no condensation)
Storage Temperature		-55 to $+70^{\circ} \mathrm{C}$ (no freezing)
Storage Humidity		45 to 85\% RH (no condensation)
Weight (approx.)		SPDT: 24 g , DPDT: 37 g , 3PDT: $50 \mathrm{~g}, 4 \mathrm{PDT}: 74 \mathrm{~g}$

*1: Measured using 5V DC, 1A voltage drop method
*2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$, excluding contact bouncing Release time of relays with diode: 40 ms maximum
*3: Relays with indicator or diode: 1000 V AC, 1 minute
*4: For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve. The operating temperature range of relays with indicator or diode is -25 to $+40^{\circ} \mathrm{C}$.

Note: Above values are initial values.

RH Series Power Relays
Internal Connection (Bottom View)
Basic

SPDT	DPDT	3PDT	4PDT	With Check Button
	$\left[\frac{\frac{1}{5} \triangleright 14}{\frac{5}{9}}\right.$			Contacts can be operated by pressing the check button. Press the button quickly to prevent arcing.

With Indicator (-L)

	$3 P D T$	4PDT		SPDT	DPDT	
Below 100V AC/DC			$\begin{aligned} & \text { Below } \\ & 24 \mathrm{~V} \\ & \text { AC/DC } \end{aligned}$			When the coil is energized, the indicator goes on. * Relays for below 100V DC do not contain a protection diode (except DPDT).
100V AC/DC and over			24V AC/DC and over			

With Diode (-D)

SPDT	DPDT	3PDT	4PDT	This type contains a diode
				generated when the coil is deenergized. The release time is slightly longer. Available for DC coil only. - Diode Characteristics Reverse withstand voltage: 1,000V Forward current: 1A

With Indicator and Diode (-LD)

RH Series Power Relays

Characteristics (Reference Data)

Maximum Switching Capacity

Electrical Life Curve

RH Series Power Relays

Dimensions

SPDT Plug-in Terminal
RH1B-U/RH1B-UL/RH1B-UD/ULD

Applicable Socket and Hold-down Spring

Socket		Hold-down Spring
Mounting Style	Part No.	
DIN Rail Mount Socket	SH1B-05*	$\begin{aligned} & \text { SFA-101 } \\ & \text { SFA-202 } \end{aligned}$
Panel Mount Socket	SH1B-51	$\begin{aligned} & \text { SY4S-51F1 } \\ & \text { SFA-301 } \\ & \text { SFA-302 } \end{aligned}$
PC Board Mount Socket	SH1B-62	

Applicable Socket and Hold-down Spring

Socket		Hold-down Spring
Mounting Style	Part No.	
DIN Rail Mount Socket	SH2B-05* (Note)	$\begin{aligned} & \text { SFA-202 } \\ & \text { SFA-101 } \end{aligned}$
Panel Mount Socket	SH2B-51	SY4S-51F1 SFA-302(Note) SFA-301(Note)
PC Board Mount Socket	SH2B-62	(SY4S-02F1)

3PDT Plug-in Terminal
RH3B-U/RH3B-UL/RH3B-D/RH3B-LD

4PDT Plug-in Terminal RH4B-U/RH4B-UL/RH4B-UD/RH4B-ULD

Total length from panel surface including relay socket SH4B-05A: 61.5 (63.5) max., SH4B-51: 39.6 (41.6) max

Applicable Socket and Hold-down Spring

Socket		Hold-down				
Spring			$	$	Mounting Style	Part No.
:---	:---					

Note: Use two SY4S-51F1 hold-down springs for the SH4B-51 socket

- (SH4B-02F1) is for the relay with check button.

RH Series Power Relays

RR series Power Relays

Heavy-duty power relays

Large capacity 10A $-1,2$, and 3 poles

- Available in pin and blade terminal styles.
- Options include an indicator, check button for test operation, and side flange.
- DIN rail, surface, and panel mount sockets are available for a wide variety of mounting applications.

Termination	Style	Part No.							Coil Voltage Code *
		SPDT	DPDT		3PDT (Note)				
Pin Terminal	Basic	-	RR2P-U*	\star	RR3P-U*	\star	RR3PA-U*	\star	AC6, AC12, AC24, AC50, AC100, AC110, AC115, AC120, AC200, AC220, AC230, AC240, DC6, DC12, DC24, DC48, DC110
	With Indicator	-	RR2P-UL*	\star	RR3P-UL*	\star	RR3PA-UL*	\star	
	With Check Button	-	RR2P-UC*	\star	RR3P-UC*	\star	RR3PA-UC*	\star	
	With Indicator and Check Button	-	RR2P-ULC*	\star	RR3P-ULC*	\star	RR3PA-ULC*	*	
Blade Terminal	Basic	RR1BA-U*	RR2BA-U*		RR3B-U*		-		
	With Indicator	RR1BA-UL*	RR2BA-UL*		RR3B-UL*		-		
	With Check Button	RR1BA-UC*	RR2BA-UC*		RR3B-UC*		-		
	With Indicator and Check Button	RR1BA-ULC*	RR2BA-ULC*		RR3B-ULC*		-		
	Side Flange	RR1BA-US*	RR2BA-US*		RR3B-US*		-		

Note:
Both RR3P and RR3PA are 3PDT relays and have different terminal arrangements. See Internal Connection on page 50 Part numbers marked with \star in the table above are UL-recognized, CSA-certified, and TÜV-approved. Others are UL-recognized and CSA-certified.

Part No. Development

When ordering, specify the Part No. and coil voltage code.

Coil Ratings

Rated Voltage (V)		Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$		$\begin{gathered} \text { Coil Resistance }(\Omega) \\ \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{gathered}$	Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)		
		50 Hz	60 Hz		Max. Continuous Applied Voltage	Minimum Pickup Voltage	Dropout Voltage
$$	6	490	420	4.9	110\%	80\% maximum	30% minimum
	12	245	210	18			
	24	121	105	79			
	50	58	50	350			
	100	29	25	1,370			
	110	27	23	1,680			
	115	25	21.5	1,800			
	120	24	20.5	2,100			
	200	14.5	12.5	5,740			
	220	13.3	11.5	7,360			
	230	12.7	11	7,830			
	240	12.1	10.5	8,330			
0	6	240		25	110\%	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$	$\begin{aligned} & 15 \% \\ & \text { minimum } \end{aligned}$
	12	120		100			
	24	60		400			
	48	30		1,600			
	110	13		8,460			

Contact Ratings

Maximum Contact Capacity					
Continuous Current	Allowable Contact Power		Rated Load		
	Resistive Load	Inductive Load	Voltage	Resistive Load	Inductive Load
10A	1650VAAC300W DC	1100VAAC 150W DC	110V AC	10A	7.5A
			220 V AC	7.5A	5A
			30V DC	10A	5A

Note: Inductive load for the rated load - $\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$ UL Ratings

Voltage	Resistive	General use	Horse Power Raging
240 V AC	10 A	7 A	$1 / 3 \mathrm{HP}$
120 V AC	10 A	7.5 A	$1 / 4 \mathrm{HP}$
30 V DC	10 A	7 A	-

CSA Ratings

Voltage	Resistive	General use
240 V AC	10 A	7 A
120 V AC	10 A	7.5 A
100 V DC	-	0.5 A
30 V DC	10 A	7.5 A

TÜV Ratings

240 V AC	10 A
30 V DC	10 A

$A C: \cos \varnothing=1.0, D C: L / R=0 \mathrm{~ms}$

Specifications

Contact Material		Silver
Contact Resistance *1		$30 \mathrm{~m} \Omega$ maximum
Minimum Applicable Load		1V DC, 10 mA (reference value)
Operate Time	*2	25 ms maximum
Release Time	*2	25 ms maximum
Power Consumption (approx.)		AC: $3 \mathrm{VA}(50 \mathrm{~Hz}), 2.5 \mathrm{VA}(60 \mathrm{~Hz})$ DC: 1.5W
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	Pin Terminal	Between live and dead parts: $1500 \mathrm{~V} \mathrm{AC}, 1$ minute Between contact and coil: 1500 V AC, 1 minute Between contacts of different poles: $1500 \mathrm{VAC}, 1$ minute Between contacts of the same pole: 1000 V AC, 1 minute
	Blade Terminal	Between live and dead parts: $2000 \mathrm{~V} \mathrm{AC}, 1$ minute Between contact and coil: $2000 \mathrm{VAC}, 1$ minute Between contacts of different poles: 2000 V AC, 1 minute Between contacts of the same pole: $1000 \mathrm{VAC}, 1$ minute
Operating Frequency		$\begin{array}{ll}\text { Electrical: } & 1800 \text { operations } / \mathrm{h} \text { maximum } \\ \text { Mechanical: } & 18,000 \text { operations } / \mathrm{h} \text { maximum }\end{array}$
Vibration Resistance		Damage limits: 10 to 55 Hz , amplitude 0.5 mm Operating extremes: 10 to 55 Hz , amplitude 0.5 mm
Shock Resistance		Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$ Operating extremes: $100 \mathrm{~m} / \mathrm{s}^{2}$
Mechanical Life		10,000,000 operations
Electrical Life		200,000 operations (220V AC, 5A)
Operating Temperature	*3	-25 to $+40^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		5 to 85\% RH (no condensation)
Weight (approx.) (Basic)		RR2P: 90g, RR3P/RR3PA: 96g, RR1BA/RR2BA/RR3B: 82 g

Note: Above values are initial values.
*1: Measured using 5V DC, 1A voltage drop method
*2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$), excluding contact bouncing
$* 3$: For use under different temperature conditions, refer to Continuous Load Current vs. Operating Temperature Curve.

Internal Connection (Bottom View)
Basic
RR2P-U

With Indicator (-UL)
Voltage

When the relay is energized, the indicator goes on.

* The LED protection diode is not contained in relays for below 100 V DC.

Characteristics (Reference Data)

Maximum Switching Capacity

Continuous Load Current vs. Operating Temperature Curve (Basic, With Check Button, and Side Flange)

Electrical Life Curve

RR Series Power Relays

Dimensions

RR2P-U/RR2P-UL

Socket			Hold-down Spring
Mounting Style		Part No.	
DIN Rail Mount Socket		$\begin{aligned} & \text { SR2P-05A } \\ & \text { SR2P-05C } \\ & \text { SR2P-06A } \end{aligned}$	SR2B-02F1 SFA-202
Panel Mount Socket	w/Solder Terminals	SR2P-511	SR3P-01F1
	w/Wire Wrap Terminals	SR2P-70	

제 자. C $($

RR3P-U/RR3P-UL/
RR3PA-U/RR3PA-UL
RR3PA-U/RR3PA-UL

Applicable Socket and Hold-down Spring

Socket			Hold-down Spring
Mounting Style		Part No.	
DIN Rail Mount Socket		$\begin{aligned} & \text { SR3P-05A } \\ & \text { SR3P-05C } \\ & \text { SR3P-06A } \end{aligned}$	$\begin{aligned} & \text { SR3B-02F1 } \\ & \text { SFA-202 } \end{aligned}$
Panel Mount Socket	w/Solder Terminals	SR3P-511	SR3P-01F1
	w/Wire Wrap Terminals	SR3P-70	

제 (1) C (

RR1BA-US
RR2BA-US
RR3B-US

제응

RV3T PC Board Terminal Relays

1NO contact, 5A. Space-saving (5 mm -wide, $12.5 \mathrm{~mm}-h i g h)$ card relay.

- Highly sensitive 120 mW
- SIL terminal enables easy patter design of PC Board terminal.
- Washable
-UL, CSA, TÜV compliant.

Applicable Standards	Mark	Certification Organization/ File No.
UL508	CN	UL recognized File No. E68961
CSA C22.2 No. 14	CSA File No. 20479	
EN61810-1	TÜV Rheinland	
		EU Low Voltage Directive

Power Consumption	Contact	Coil Rated Voltage	Part No.
120 mW		5 V DC	RV3T-1G05
		12V DC	RV3T-1G12
		24V DC	RV3T-1G24
200 mW	1NO	5V DC	RV3T-2G05
		12V DC	RV3T-2G12
		24V DC	RV3T-2G24

Coil Ratings

Power Consumption	Rated Voltage	$\begin{gathered} \text { Coil } \\ \text { Resistance } \\ \pm 10 \% \\ \text { (at } 20^{\circ} \mathrm{C} \text {) } \\ \hline \end{gathered}$		Operating Characteristics (against rated values at $20^{\circ} \mathrm{C}$)
120 mW	5V DC	210Ω	24 mA	Pickup voltage (initial value: 70\% Dropout voltage (initial value): 5\% Maximum continuous applied voltage: 190\%
	12V DC	1,200	10 mA	
	24V DC	4,800 Ω	5 mA	
200mW	5 V DC	125Ω	40 mA	
	12V DC	720Ω	16.7 mA	
	24V DC	2,880 Ω	8.3 mA	

Coil Ratings

Maximum Applied Voltage	250 V AC, 125V DC
Rated Current	5 A
Rated Contact Voltage/Current	AC250V 5A (resistive load) 24 V DC 5A (resistive load)
Minimum Applicable Load (reference value)	DC0.1V, 100 $\mu \mathrm{A}$

Approved Ratings

UL and CSA Ratings

UL Ratings			CSA Ratings		
Contacts			Contacts		
Voltage	Resistive	Inductive	Voltage	Resistive	Inductive
240 V AC	5A	-	240V AC	5A	-
120 V AC	-	$\begin{gathered} 1 \mathrm{~A} \\ \text { (Pilot duty) } \end{gathered}$	120 V AC	-	1A (Pilot duty) (10A inrush)
120 V DC	0.5A	0.2A (Pilot duty)	120 V DC	0.5A	0.2A (15ms)
30V DC	5A	2A (Pilot duty)	30V DC	5A	2A (15ms)

TÜV Ratings

Rated Contact Data	
Max. Rated Voltage	Max. Rated Current
AC 240V	5 A
DC 120V	$\leq 5 \mathrm{~A}$

Specifications

Contact Resistance *1		$30 \mathrm{~m} \Omega$ maximum
Operate Time *2		10 ms maximum
Release Time *2		5 ms maximum
Insulation Resistance		$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength		
Vibration Resistance	Damage limits	10 to 55 Hz , amplitude 0.75 mm
	Operating extremes	10 to 55 Hz , amplitude 0.75 mm
Shock Resistance	Damage limits	$1000 \mathrm{~m} / \mathrm{s}^{2}$
	Operating extremes	$100 \mathrm{~m} / \mathrm{s}^{2}$
Operating Temperature		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity		45 to 85\% RH (no condensation)
Storage Temperature		-40 to $+70^{\circ} \mathrm{C}$ (no freezing)
Storage Humidity		45 to 85\% RH (no condensation)
Life	Mechanical	20,000,000 operations minimum (operating frequency 18,000 operations/hour)
	Electrical	See electrical life curves (operating frequency 1,800 operations/ hour)
Weight (approx.)		3 g

Note: Above values are initial values.
*1: Measured using 5V DC, 1A voltage drop method
2: Measured at the rated voltage (at $20^{\circ} \mathrm{C}$)

Dimensions

All dimensions in mm .
Internal Connection
[5 5

Mounting Hole Layout (bottom view)

RV3T PC Board Terminal Relays

Electrical Life Curve

Coil Voltage Range

Single mounting

Collective Mounting

Maximum Switching Current

RF1V Force Guided Relays

Compact and EN compliant RF1V force guided relays.

- Force guided contact mechanism (EN50205 Type A TÜV approved)
Contact configuration
4-pole (2NO-2NC, 3NO-1NC)
6 -pole (4NO-2NC, 5NO-1NC, 3NO-3NC)
- Built-in LED indicator available.
- Fast response time (8 ms maximum).
- High shock resistance ($200 \mathrm{~m} / \mathrm{s}^{2}$ minimum)
- Finger-safe DIN rail mount socket and PC board mount socket.

Applicable Standard	Marking	Certification Organization / File No.
UL508	SA	UL recognized File No. E55996
CSA C22.2 No.14	CSA File No. 253350	
EN50205 EN61810-1	TUV	TÜV SÜD

Force Guided Relays

	tact	Rated Coil Voltage	Without LED Indicator	With LED Indicator
		Rated Coil Voltage	Part No.	Part No.
		12 V D	RF1V-2A2B-D12	RF1V-2A2BL-D12
	2NO-2NC	24V DC	RF1V-2A2B-D24	RF1V-2A2BL-D24
4-pole		48V DC	RF1V-2A2B-D48	RF1V-2A2BL-D48
4-pole		12 V DC	RF1V-3A1B-D12	RF1V-3A1BL-D12
	3NO-1NC	24V DC	RF1V-3A1B-D24	RF1V-3A1BL-D24
		48 V DC	RF1V-3A1B-D48	RF1V-3A1BL-D48
		12 V DC	RF1V-4A2B-D12	RF1V-4A2BL-D12
	4NO-2NC	24V DC	RF1V-4A2B-D24	RF1V-4A2BL-D24
		48V DC	RF1V-4A2B-D48	RF1V-4A2BL-D48
		12 V DC	RF1V-5A1B-D12	RF1V-5A1BL-D12
6-pole	5NO-1NC	24 V DC	RF1V-5A1B-D24	RF1V-5A1BL-D24
		48 V DC	RF1V-5A1B-D48	RF1V-5A1BL-D48
		12 V DC	RF1V-3A3B-D12	RF1V-3A3BL-D12
	3NO-3NC	24V DC	RF1V-3A3B-D24	RF1V-3A3BL-D24
		48 V DC	RF1V-3A3B-D48	RF1V-3A3BL-D48

Package quantity: 10

Coil Ratings

Contact		Rated Coil Voltage (V)	$\begin{gathered} \text { Rated Current } \\ (\mathrm{mA}) \pm 10 \% \\ \left(\text { at } 20^{\circ} \mathrm{C}\right)(\text { Note } 1) \end{gathered}$	$\begin{gathered} \text { Coil } \\ \text { Resistance (} \Omega \text {) } \\ \pm 10 \% \text { (at } 20^{\circ} \mathrm{C} \text {) } \end{gathered}$	Operating Characteristics (at $20^{\circ} \mathrm{C}$)			Power Consumption	
		Pickup Voltage (initial value)			Dropout Voltage (initial value)	Maximum Continuous Applied Voltage (Note 2)			
4-pole	2NO-2NC		12V DC	30	400	75\% maximum	10\% minimum	110\%	Approx. 0.36 W
		24V DC	15	1600					
		48V DC	7.5	6400					
	3NO-1NC	12 V DC	30	400					
		24V DC	15	1600					
		48 V DC	7.5	6400					
6-pole	4NO-2NC	12 V DC	41.7	288	Approx. 0.5W				
		24V DC	20.8	1152					
		48 V DC	10.4	4608					
	5NO-1NC	12 V DC	41.7	288					
		24V DC	20.8	1152					
		48 V DC	10.4	4608					
	3NO-3NC	12 V DC	41.7	288					
		24 V DC	20.8	1152					
		48V DC	10.4	4608					

[^2]RF1V Force Guided Relays

Specifications

Number of Poles		4-pole		6-pole		
Contact Configuration		2NO-2NC	3NO-1NC	4NO-2NC	5NO-1NC	3NO-3NC
Contact Resistance (initial value) (Note 1)		$100 \mathrm{~m} \Omega$ maximum				
Contact Material		AgSnO_{2} (Au flashed)				
Rated Load (resistive load)		6A 250V AC, 6A 30V DC				
Allowable Switching Power (resistive load)		1500 VA, 180W				
Allowable Switching Voltage		250V AC, 125V DC				
Allowable Switching Current		6A				
Minimum Applicable Load (Note 2)		5 V DC, 1 mA (reference value)				
Power Consumption (approx.)		0.36W		0.5W		
Insulation Resistance		$1000 \mathrm{M} \Omega$ minimum (500V DC megger, same measurement positions as the dielectric strength)				
Dielectric Strength	Between contact and coil	4000 V AC, 1 minute				
	Between contacts of different poles	2500V AC, 1 minute Between contacts 7-8 and 9-10		2500V AC, 1 minute Between contacts 7-8 and 11-12 Between contacts 9-10 and 13-14 Between contacts 11-12 and 13-14		
		4000V AC, 1 min. Between contacts 3-4 and 5-6 Between contacts 3-4 and 7-8 Between contacts 5-6 and 9-10		4000V AC, 1 min. Between contacts 3-4 and 5-6 Between contacts 3-4 and 7-8 Between contacts 5-6 and 9-10 Between contacts 7-8 and 9-10		
	Between contacts of the same pole	1500 V AC, 1 minute				
Operate Time (at $20^{\circ} \mathrm{C}$)		20 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Response Time (at $20^{\circ} \mathrm{C}$) (Note 3)		8 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Release Time (at $20^{\circ} \mathrm{C}$)		20 ms maximum (at the rated coil voltage, excluding contact bounce time)				
Vibration Resistance	Operating Extremes	10 to 55 Hz , amplitude 0.75 mm				
	Damage Limits	10 to 55 Hz , amplitude 0.75 mm				
Shock Resistance	Operating Extremes (half sine-wave pulse: 11 ms)	$200 \mathrm{~m} / \mathrm{s}^{2}$, when mounted on DIN rail mount socket: $150 \mathrm{~m} / \mathrm{s}^{2}$				
	Damage Limits (half sine-wave pulse: 6 ms)	$1000 \mathrm{~m} / \mathrm{s}^{2}$				
Electrical Life		250V AC 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) 30V DC 6A resistive load: 100,000 operations minimum (operating frequency 1200 per hour) 250V AC 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) 30 V DC 1A resistive load: 500,000 operations minimum (operating frequency 1800 per hour) [AC 15] 240V AC 2A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, $\cos \varnothing=0.3$) [DC 13] 24V DC 1A inductive load: 100,000 operations minimum (operating frequency 1200 per hour, L/R $=48 \mathrm{~ms}$)				
Mechanical Life		10 million operations minimum (operating frequency 10,800 operations per hour)				
Operating Temperature (Note 4)		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Storage Temperature		-40 to $+85^{\circ} \mathrm{C}$ (no freezing)				
Operating Humidity		5 to 85\% RH (no condensation)				
Storage Humidity		5 to 85\% RH (no condensation)				
Operating Frequency (rated load)		1200 operations per hour				
Weight (approx.)		20 g		23g		

Note 1: Measured using 6V DC,1A voltage drop method.
Note 2: Failure rate level P, 1/10,000,000 (reference value) (JIS C5003)
Note 3: Response time is the time until NO contact opens, after the coil voltage is turned off.
Note 4: When using at 70 to $85^{\circ} \mathrm{C}$, reduce the switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

RF1V Force Guided Relays

Notes on Contact Gaps except Welded

 ContactsExample: RF1V-2A2B-D24

- If the NO contact (7-8 or 9-10) welds, the NC contact (3-4 or $5-6)$ remains open even when the relay coil is de-energized, maintaining a gap of 0.5 mm . The remaining unwelded NO contact $(9-10$ or $7-8)$ is either open or closed.
- If the NC contact (3-4 or 5-6) welds, the NO contact (7-8 or $9-10$) remains open even when the relay coil is energized, maintaining a gap of 0.5 mm . The remaining unwelded NC contact (5-6 or 3-4) is either open or closed.

RF1V Dimensions RF1V (4-pole)

PC Board Terminal Mounting Hole Layout (Bottom View)
 RF1V (6-pole)

Internal Connection (Bottom View)

RF1V (4-pole)

With LED Indicator

2NO-2NC Contact

RF1V (6-pole)

Without LED Indicator

With LED Indicator

RF1V Force Guided Relays

Instructions

1. Driving Circuit for Relays
2. To make sure of correct relay operation, apply rated voltage to the relay coil. Pickup and dropout voltages may differ according to operating temperature and conditions.
3. Input voltage for DC coil: A complete DC voltage is best for the coil power to make sure of stable operation. When using a power supply containing a ripple voltage, suppress the ripple factor within 5%. When power is supplied through a rectifications circuit, relay operating characteristics, such as pickup voltage and dropout voltage, depend on the ripple factor. Connect a smoothing capacitor for better operating characteristics as shown below.
 Emin = Minimum of pulsating current Emean $=$ DC mean value
4. Operating the relay in sync with an AC load: If the relay operates in sync with AC power voltage of the load, the relay life may be reduced. If this is the case, select a relay in consideration of the required reliability for the load. Or, make the relay turn on and off irrespective of the AC power phase or near the point where the AC phase crosses zero voltage.

5. Leakage current while relay is off: When driving an element at the same time as the relay operation, special consideration is needed for the circuit design. As shown in the incorrect circuit below, leakage current (lo) flows through the relay coil while the relay is off. Leakage current causes coil release failure or adversely affects the vibration resistance and shock resistance. Design a circuit as shown in the correct example.

Incorrect

5. Surge suppression for transistor driving circuits: When the relay coil is turned off, a high-voltage pulse is generated. Be sure to connect a diode to suppress the counter electromotive force. Then, the coil release time becomes slightly longer. To shorten the coil release time, connect a Zener diode between the collector and emitter of the controlling transistor. Select a Zener diode with a Zener voltage slightly higher than the power voltage.

6. The coil terminal of the relay has polarity. Connect terminals according to the internal connection diagram. Incorrect wiring may cause malfunction.

2. Protection for Relay Contacts

1. The contact ratings show maximum values.

Make sure that these values are not exceeded. When an inrush current flows through the load, the contact may become welded. If this is the case, connect a contact protection circuit, such as a current limiting resistor.
2. Contact protection circuit:

When switching an inductive load, arcing causes carbides to form on the contacts, resulting in an increased contact resistance. In consideration of contact reliability, contact life, and noise suppression, use of a surge absorbing circuit is recommended. Note that the release time of the load becomes slightly longer. Check the operation using an actual load. Incorrect use of a contact protection circuit will adversely affect switching characteristics. Four typical examples of contact protection circuits are shown in the following table:

3. Do not use a contact protection circuit as shown below:

Generally, switching a DC inductive load is more difficult than switching a DC resistive load. Using an appropriate arc suppressor will improve the switching characteristics of a DC inductive load.
3. Usage, transport, and storage conditions

1. Temperature, humidity, atmospheric pressure during usage, transport, and storage.
(1) Temperature: $-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (no freezing) When the temperature is 70 to $80^{\circ} \mathrm{C}$, reduce the 6 A max. switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$
(2) Humidity: 5 to 85% RH (no condensation) The humidity range varies with temperature. Use within the range indicated in the chart below.
(3) Atmospheric pressure: 86 to 106 kPa

Operating temperature and humidity range

2. Condensation

Condensation occurs when there is a sudden change in temperature under high temperature and high humidity conditions. The relay
insulation may deteriorate due to condensation.
3. Freezing

Condensation or other moisture may freeze on the relay when the temperatures is lower than $0^{\circ} \mathrm{C}$. This causes problems such as sticking of movable parts or delay in operation.
4. Low temperature, low humidity environments Plastic parts may become brittle when used in low temperature and low humidity environments.

4. Panel Mounting

When mounting DIN rail mount sockets on a panel, take the following into consideration.

- Use M3.5 screws, spring washers, and hex nuts.
- For mounting hole layout, see the dimensions on page 56.
- Keep the tightening torque within 0.49 to 0.68
$\mathrm{N} \cdot \mathrm{m}$. Excessive tightening may cause damage to the socket.

5. Others

1. General notice:
(1) To maintain the initial characteristics, do not drop or shock the relay.
(2) The relay cover cannot be removed from the base during normal operation. To maintain the initial characteristics, do not remove the relay cover.
(3) Use the relay in environments free from condensation, dust, sulfur dioxide $\left(\mathrm{SO}_{2}\right)$, and hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$.
(4) The RF1V relay cannot be washed as it is not a sealed type. Also make sure that flux does not leak to the PC board and enter the relay.
2. Connecting outputs to electronic circuits: When the output is connected to a load which responds very quickly, such as an electronic circuit, contact bouncing causes incorrect operation of the load. Take the following measures into consideration.
(1) Connect an integration circuit.
(2) Suppress the pulse voltage due to bouncing within the noise margin of the load.
3. Do not use relays in the vicinity of strong magnetic field, as this may affect relay operation.
4. UL and CSA ratings may differ from product rated values determined by IDEC.

6. Notes on PC Board Mounting

- When mounting 2 or more relays on a PC board, keep a minimum spacing of 10 mm in each direction. If used without spacing of 10 mm , rated current and operating temperature differs. Consult IDEC.
- Manual soldering: Solder the terminals at $400^{\circ} \mathrm{C}$ within 3 sec.
- Auto-soldering: Preliminary heating at $120^{\circ} \mathrm{C}$ within 120 sec . Solder at $260^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ within 6 sec .
- Because the terminal part is filled with epoxy resin, do not excessively solder or bend the
terminal. Otherwise, air tightness will degrade.
- Avoid the soldering iron from touching the relay cover or the epoxy filled terminal part. Use a non-corrosive resin flux.

Control circuits conforming with safety categories 2,3 , and 4 can be constructed.

Safety category 4 control circuits

The circuit example below consisting of interlock switches, force guided relays, and safety contactors are only a part of a safety-related system in a machine. In actual machines, risk assessment must be performed taking various aspects into consideration such as hazard types, safeguarding measures, and change of hazard level in operating mode, in order to reduce the risk of the entire machine to a tolerable level. The safety category of a machine needs to be evaluated for the entire safety-related system

Safety function at occurrence of single faults

1. If a short-circuit failure occurs at either of the S1 channels, when the safety guard is opened, K2 does not turn off but K1 turns off, so safety function (power interruption to the motor) is maintained. The system does not restart because the NC contact of K2 remains open and K3 is not energized even when S2 is turned on.
2. If a short-circuit failure occurs between S 1 channels, the potential difference of K1 and K2 coils become OV, turning K1 and K2 off. (Fault detection function between safety input circuits)
3. If NO contact of KM1 is welded, KM2 turns off when the safety guard is opened, so the safety function (power interruption to the motor) is maintained. The system does not restart because the NC contact of KM1 remains open and K3 is not energized even when S2 is turned on.
4. If the NO contact of K1 is welded, K2 turns off when the safety guard is opened, so the safety function (power interruption to the motor) is maintained. The system does not restart because the NC contact of K1 remains open and K 3 is not energized even when S 2 is turned on.
5. If NC contact of K3 is welded, K1 and K2 turn off when the safety guard is opened, so the safety function (power interruption to the motor) is maintained. Also, the system does not restart because NO contact of K3 does not shut, therefore K1 and K2 cannot be energized.

$\begin{array}{ll}\text { S1: } & \text { HS6B subminiature interlock switch } \\ \text { S2: } & \text { Start switch (HW series momentary) }\end{array}$ K1, K2, K3: RF1V force guided relays KM1, KM2: Safety contactor

Motor
Protection fuse for safety circuit
Protection fuse for contact output of force
guided relay contact
Protection fuse for contact output of safety contactors

S1:

S2:
K3:
relay
K1, K2: Force guided
relays
Safety contactor output
(KM1, KM2)

RR2KP Latch Relays

Self－maintained Latch Relays DPDT－10A contact capacity

The RR2KP series latch relays have a self－holding function using permanent magnets in the magnetic circuit．Applying a voltage on the set（or reset）coil operates the armature and retains the contacts in that position until the opposite coil is energized，hence the latch relays are ideal for memory and flip－ flop circuit applications．
－Enhanced self－holding functions，and vibration and shock resistance．
－The self－holding mechanism is not subject to wear unlike mechanical latch relays．
－Recognized by UL and certified by CSA．

제（1）

Terminal Style	Style	Part No．	Coil Voltage Code＊
Pin Terminal	Basic	RR2KP－U＊	AC6，AC12，AC24，AC50，AC100， AC110，AC115，AC120，AC200，
	With Check Button	RR2KP－UC＊	AC220，AC230，AC240 DC6，DC12，DC24，DC48，DC110

Part No．Development
When ordering，specify the Part No．and coil voltage code．
（Example）

RR2KP－U	AC110
Part No．	LCoil Voltage Code

Coil Ratings

Rated Voltage（V）		Rated Current（mA）$\pm 15 \%$ at $20^{\circ} \mathrm{C}$		$\begin{gathered} \text { Coil Resistance }(\Omega) \\ \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{gathered}$	Operation Characteristics （against rated values at $20^{\circ} \mathrm{C}$ ）	
		50 Hz	60 Hz		Maximum Continuous Applied Voltage	Set and Reset Voltage
$\begin{aligned} & \mathbb{N} \\ & ⿳ 亠 口 冋 口 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	6	467	429	3.5	（10\％	80\％ maximum
	12	200	184	23.8		
	24	100	92	95		
	50	48	44	400		
	100	24	22	1，600		
	110	23	21	1，900		
	115	23	21	2，200		
	120	24	22	2，200		
	200	12	11	6，400		
	220	10.9	10	7，740		
	230	11.1	10.2	9，190		
	240	11.5	10.6	9，190		
0	6	240		25	110\％	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$
	12	120		100		
	24	60		400		
	48	30		1，600		
	110	13.8		7，960		

Contact Ratings

Maximum Contact Capacity						
		Allowable Co	ntact Power		ted Lo	
Voltage	Current	Resistive Load	Inductive Load	Voltage	Res． Load	Ind． Load
$\begin{aligned} & \text { 250V AC } \\ & \text { 125V DC } \end{aligned}$	10A	1650 VA AC300 W DC	1100 VA AC 225W DC	110 V AC	10A	7．5A
				220 V AC	7．5A	5A
				30V DC	10A	7．5A
				100V DC	0．5A	0．3A

Note：Inductive load for rated load $-\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$

UL Ratings

Voltage	Resistive	General Use	Motor Load
240 V AC	10 A	7 A	$1 / 3 \mathrm{HP}$
120 V AC	10 A	7.5 A	$1 / 4 \mathrm{HP}$
30 V DC	10 A	7 A	-

CSA Ratings

Voltage	Resistive	General Use	Motor Load
240 V AC	10 A	7 A	$1 / 3 \mathrm{HP}$
120 V AC	10 A	7.5 A	$1 / 4 \mathrm{HP}$
100 V DC	-	0.5 A	-
30 V DC	10 A	7.5 A	-

RR2KP Latch Relays

Specifications

Contact Material	Silver
Contact Resistance	$30 \mathrm{~m} \Omega$ maximum (initial value)
Operate Time	25 ms maximum (at the rated voltage)
Power Consumption (approx.)	AC: $2.4 \mathrm{VA}(50 \mathrm{~Hz}), 2.2 \mathrm{VA}(60 \mathrm{~Hz})$ $\mathrm{DC}: 1.5 \mathrm{~W}$ DC: 1.5 W
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	Between live and dead parts: $1,500 \mathrm{~V}$ AC, 1 minute Between contact and coil: 1,500V AC, 1 minute Between contacts of different poles: 1,500V AC, 1 minute Between contacts of the same pole: $1,000 \mathrm{~V}$ AC, 1 minute
Operating Frequency	Electrical: 1800 operations/h maximum Mechanical: 18,000 operations/h maximum
Temperature Rise	Coil: $85^{\circ} \mathrm{C}$ maximum, Contact: $65^{\circ} \mathrm{C}$ maximum
Vibration Resistance	0 to $60 \mathrm{~m} / \mathrm{s}^{2}$ (maximum frequency: 55 Hz), Frequency: 5 to 55 Hz , Amplitude: 0.5 mm
Shock Resistance	$100 \mathrm{~m} / \mathrm{s}^{2}$ minimum
Mechanical Life	5,000,000 operations minimum
Electrical Life	500,000 operations minimum (110V AC, 10A)
Operating Temperature	-5 to $+40^{\circ} \mathrm{C}$ (no freezing)
Operating Humidity	45 to 85\% RH (no condensation)
Weight (approx.)	170 g

Characteristics (Reference Data)

Electrical Life Curve

Internal Connection (Bottom View)

Dimensions

Applicable Socket and Hold-down Spring

Applicable Socket and Hold-down Spring			
Socket			Hold-down Spring
	Mounting Style	Part No.	
DIN Rai	Mount Socket	$\begin{array}{\|l\|} \hline \text { SR3P-05A } \\ \text { SR3P-05C } \\ \text { SR3P-06A } \end{array}$	SR3P-06F3
Panel Mount Socket	w/Solder Terminals	SR3P-511	SR3P-511F3
	w/Wire Wrap Terminals	SR3P-70	

RY2KS Latch Relays

Self-maintained Latch Relays DPDT - 3A contact capacity

The RY2KS series latch relays have a self-holding function using permanent magnets in the magnetic circuit. Applying a voltage on the set (or reset) coil operates the armature and retains the contacts in that position until the opposite coil is energized, hence the latch relays are ideal for memory and flip-flop circuit applications.

- Mountable in the same space as other miniature relays using the same sockets.
- Recognized by UL and certified by CSA.

민 (1)

Terminal Style	Style	Part No.	Coil Voltage Code *
Plug-in Terminal	Basic	RY2KS-U*	AC6, AC12, AC24, AC50, AC100, AC120
	With Check Button	RY2KS-UC*	DC6, DC12, DC24, DC48, DC100, DC110

Part No. Development
When ordering, specify the Part No. and coil voltage code.
(Example) RY2KS-U AC120
Part No. \quad Coil Voltage Code

Coil Ratings

Rated Voltage (V)		Rated Current (mA) $\pm 15 \%$ at $20^{\circ} \mathrm{C}$		$\begin{gathered} \text { Coil Resistance }(\Omega) \\ \pm 10 \% \text { at } 20^{\circ} \mathrm{C} \end{gathered}$	Operation Characteristics (against rated values at $20^{\circ} \mathrm{C}$)	
		50 Hz	60 Hz		Maximum Continuous Applied Voltage	Set and Reset Voltage
	6	260	250	6.3	110\%	80% maximum
	12	120	115	30.3		
	24	58	56	132		
	50	27	26	606		
	100	13.5	13	2,630		
	120	11.2	10.8	3,840		
0	6	200		30	110\%	$\begin{gathered} 80 \% \\ \text { maximum } \end{gathered}$
	12	100		120		
	24	50		480		
	48	25		1,920		
	100	12		8,330		
	110	11		10,000		

Contact Ratings

Maximum Contact Capacity						
Switching Voltage	Continuous Current	Allowable C	ntact Power		d Loa	
		Resistive Load	Inductive Load	Voltage	Res. Load	Ind. Load
$\begin{aligned} & 250 \mathrm{~V} \text { AC } \\ & 125 \mathrm{DC} \end{aligned}$	3A	660VA AC 90W DC	$\begin{gathered} \text { 176VA AC } \\ \text { 45W DC } \end{gathered}$	110V AC	3A	1.5A
				220 V AC	3A	0.8A
				30V DC	3A	1.5
				100V DC	0.2A	0.12A

Note: Inductive load for rated load - $\cos \varnothing=0.3, L / R=7 \mathrm{~ms}$
UL Ratings

Voltage	Resistive	General Use
240 V AC	3 A	0.8 A
120 V AC	3 A	1.5 A
30 V DC	3 A	-

CSA Ratings

Voltage	Resistive	General Use
240 V AC	3 A	0.8 A
120 V AC	3 A	1.5 A
100 V DC	-	0.2 A
30 V DC	3 A	1.5 A

Specifications

Contact Material	Gold-plated silver
Contact Resistance	$50 \mathrm{~m} \Omega$ maximum (initial value)
Set Time	25 ms maximum (at the rated voltage)
Reset Time	25 ms maximum (at the rated voltage)
Power Consumption (approx.)	AC: $1.6 \mathrm{VA}(50 \mathrm{~Hz}), 1.5 \mathrm{VA}(60 \mathrm{~Hz})$ DC: 1.2 W
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)
Dielectric Strength	Between live and dead parts: 1,500V AC, 1 minute Between contact and coil: 1,000V AC, 1 minute Between contacts of different poles: 1,000V AC, 1 minute Between contacts of the same pole: 700 V AC, 1 minute
Operating Frequency	Electrical: $\quad 1800$ operations/h maximum Mechanical: 18,000 operations/h maximum
Temperature Rise	Coil: $85^{\circ} \mathrm{C}$ maximum, Contact: $65^{\circ} \mathrm{C}$ maximum
Vibration Resistance	0 to $60 \mathrm{~m} / \mathrm{s}^{2}$ (maximum frequency: 55 Hz), Frequency: 5 to 55 Hz , Amplitude: 0.5 mm
Shock Resistance	$200 \mathrm{~m} / \mathrm{s}^{2}$ minimum
Mechanical Life	5,000,000 operations minimum
Electrical Life	200,000 operations minimum
Operating Temperature	-5 to $+40^{\circ} \mathrm{C}$ (no freezing)
Weight (approx.)	67 g

RY2KS Latch Relays

Characteristics (Reference Data)

Electrical Life Curve

Internal Connection (Bottom View)

Dimensions

All dimensions in mm.

Applicable Socket and Hold-down Spring

Socket		Hold-down Spring
Mounting Style	Part No.	
DIN Rail Mount Socket	SY4S-05A SY4S-05C	SFA-202
Panel Mount Socket	SY4S-51	SY4S-51F3 (SY4S-02F3)
PC Board Mount Socket	SY4S-61	SFA-302
	SY4S-62	SY4S-51F3 (SY4S-02F3)

Notes:

1. For the relays with check button, use the parenthesized hold-down springs shown in the above table. When the spring is used, sockets cannot be mounted closely side by side.
2. Leaf springs come in pairs.
3. Use the hold-down springs in environments where the relays are subject to vibrations or shocks.

For details about sockets and hold-down springs, see page 79.

Relay Sockets

SJ Series Relay Sockets 64
SJ Series PC Board Mount Sockets. 68
DF Series Finger-safe Sockets 70
SU Series Spring Clamp Relay Sockets 73
SF1V Relay Sockets 77
Relay Sockets 79
Socket selection Guide 79
DIN Rail Mount Sockets 81
Panel Mount Sockets. 87
PC Board Mount Sockets 89
Accessories 91

SJ Series Relay Sockets

Slim, space-saving relay sockets.
Release lever with integrated marking plate allows for easy maintenance in narrow spaces.

- $15.5-\mathrm{mm}$ wide
- Standard screw terminal and finger-safe screw terminal are available.
- Release lever has an integrated extensible marking plate.
- Optional marking plate is also available. Can be attached to the release lever (at one position) and the socket (at four positions, finger-safe screw terminal only).
- Degree of protection IP20 (finger-safe screw terminal)
- The release lever makes installation and removal of relays inside small panels simple and quick.
- UL recognized, CSA certified, EN compliant.

Applicable Standard	Mark	Certification Organization / File No.
UL508	UL recognized, File No. E62437	
CSA C22.2 No. 14	CSA File No. LR84913	
EN60999-1		EU Low Voltage Directive (Finger-safe screw terminal only)

Terminal Style	Part No.			
	1-pole		2-pole	
Terminal No. Marking Color	Black	White	Black	White
Standard Screw Terminal	SJ1S-05B	SJ1S-05BW	SJ2S-05B	SJ2S-05BW
Finger-safe Screw Terminal	SJ1S-07L	SJ1S-07LW	SJ2S-07L	SJ2S-07LW

Note: Release lever is supplied with each socket.

Specifications

Model	SJ1S	SJ2S		
Rated Current	12 A	8 A		
Rated Insulation Voltage	$250 \mathrm{~V} \mathrm{AC/DC}$	$2 \mathrm{~mm}^{2}$ maximum (14 AWG)		
Applicable Wire	$2 \mathrm{~mm}^{2} \times 2$			
Applicable Crimping				
Terminal			\quad	Recommended Tightening
:---	:---			
Torque	$\quad 1.0 \mathrm{~N} \cdot \mathrm{~m}$.			

Applicable Crimping Terminals

All dimensions in mm.
Note: Ring tongue terminals cannot be used on finger-safe sockets.

Applicable Relay

Terminal Style	1-pole		2-pole	
	Socket	Relay	Socket	Relay
Standard Screw Terminal	SJ1S-05B SJ1S-05BW	RJ1S series	$\begin{aligned} & \text { SJ2S-05B } \\ & \text { SJ2S-05BW } \end{aligned}$	RJ2S series RJ22S series
Finger-safe Screw Terminal	SJ1S-07L SJ1S-07LW		$\begin{aligned} & \text { SJ2S-07L } \\ & \text { SJ2S-07LW } \end{aligned}$	

SJ Series Relay Sockets

Dimensions

SJ1S-07L(W) M3 Teminal Screws

(integrated with release lever)

SJ2S-07L(W) M3 Terminal Screws

Release Lever
SJ9Z-CM

When not using marking plate
Detachable Marking Plate SJ9Z-PW

All dimensions in mm .

Replacement Parts

Description	Shape	Material	Part No.	Ordering No.	Package Quantity
Release Lever (with integrated marking plate)	Plastic (gray)	SJ9Z-CM	SJ9Z-CMPN05	5	
Detachable Marking Plate (optional)		Plastic (white)	SJ9Z-PW	SJ9Z-PWPN05	5

Accessories

Description	Shape	Material	Part No.	Ordering No.	Package Quantity	Note
DIN Rail		Aluminum Weight: Approx. 200g	BAA1000	BAA1000PN10	10	Length: 1 m
		Steel Weight: Approx. 200g	BAP1000	BAP1000PN10		Width: 35 mm
End Clip		Metal (zinc plated steel) Weight: Approx. 15 g	BNL5	BNL5PN10		Used on a DIN rail to fasten relay sockets. To prevent the sockets from damage, position the clip before fastening.
	$\stackrel{45}{4.9}$		BNL6	BNL6PN10		
DIN Rail Spacer		Plastic (black)	SA-406B	SA-406B	1	Thickness: 5 mm Used for adjusting spacing between sockets mounted on a DIN rail
Jumper	For 2 sockets	Nickel-coated brass with polypropylene coating	SJ9Z-JF2	SJ9Z-JF2PN10	10	Terminal centers: 15.5 mm Rated current: 12A Ensure that the total current to the jumper does not exceed the maximum current.
	For 5 sockets		SJ9Z-JF5	SJ9Z-JF5PN10		
	For 8 sockets		SJ9Z-JF8	SJ9Z-JF8PN10		
	For 10 sockets		SJ9Z-JF10	SJ9Z-JF10PN10		

SJ Series Relay Sockets

Safety Precautions

- Turn off power to the relay and the socket before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Use wires of the proper size to meet the voltage and current requirements.
- Make sure that relay and output equipment are wired correctly. Incorrect wiring causes overheat resulting in possible fire hazard.
- Prevent metal fragments and pieces of wire from dropping inside the socket. Ingress of such fragments and chips may cause fire hazard, damage, or malfunction.

Operating Instructions

Installing relays

The relay is installed on the socket using the release lever. Leaf spring is not necessary.

Rail Mounting and Removing

Do not mount or remove the socket in cold temperature (below $-20^{\circ} \mathrm{C}$), otherwise the socket may be damaged.

Applicable Screwdriver

Standard Screw Terminal

Phillips: $\varnothing 6.4 \mathrm{~mm}$ maximum
Slotted: Shown at right

Finger-safe Screw Terminal
Phillips: $\varnothing 5.5 \mathrm{~mm}$ maximum
Slotted: Shown at right

Installing relays

1. Unlock the release lever by pulling down as shown with arrow (1).
2. Press relay against the socket as shown with arrow (2).

Make sure that the relay is firmly in place.
3. Confirm that the relay is securely installed in the socket. When installed properly, the relay and the socket look as shown in (3).

Caution

Ensure that the relay is installed in the socket completely. When installed loosely, the relay may fall out, resulting in possible damage to the relay.

Removing the release lever

(1) Lightly press the relay to prevent it from falling off.
(2) Pull down the release lever to the direction shown by the arrow until it touches the socket. Pull down further, and the lever will be detached from the socket.

Caution

- Make sure that wire or finger is not caught between the release lever and socket.
- Because release lever is detachable, make sure not to apply excessive force. Otherwise the relay may fall and result in damage.

Panel Mounting

Insert the anti-rotation projection into the anti-rotation hole. Mount the socket onto the panel using M3 screws (not provided). Use a screwdriver with diameter of $\varnothing 5.5 \mathrm{~mm}$ maximum.

Mounting Hole Layout

- Tighten the mounting screws to a torque of $1.0 \mathrm{~N} \cdot \mathrm{~m}$.

Tightening with higher torque will damage the socket.

- The round rib projecting from the socket bottom prevents rotation when the socket is mounted on the panel directly.

Removing the Release Lever

Pull down the release lever to the direction shown by the arrow until it touches the socket. Pull down further, and the lever will be detached from the socket.

Caution

Make sure that the relay has been removed from the socket before removing the release lever. If the release lever is removed when the relay is installed on the socket, the relay may fall out.

SJ Series Relay Sockets

Operating Instructions

Installing the Release Lever

(1) Attach part A to part B.
(2) Slide the release lever in the direction of the arrow until part A runs out of part B.
(3) Rotate the release lever, with the center of rotation at part C until part A touches the rotation axis.
(4) Push the rib of the release lever against the socket.
(5) Complete the installation.

Using Marking Plate integrated with SJ9M-CM Release Lever

(1) Using a nipper, cut the marking plate at the separation part shown below, so that the marking plate can be lifted. (Note)
(2) Lift the marking plate as shown with the arrow, past the projections.
(3) Marking plate is in place.

- The integrated marking plate must be retracted to the original position when wiring.
- The SJ9Z-CM integrated marking plate can be lifted and retracted for 50 times minimum.

Using SJ9Z-PW Detachable Marking Plate (optional)

(1) Insert the marking plate into the slot on the release lever or socket.
Note: SJ9Z-PW detachable marking plate cannot be installed on the SJ1S-05B(W)/SJ2B-05B(W) socket.
(2) The marking plate is installed.
(1)

(TOP VIEW)

Current

Check the current of relay and ensure that the current is maintained below the values shown in the following table.

	SJ1S-05B(W)			SJ1S-07L(W)			SJ2S-05B(W)			SJ2S-07L(W)		
Ambient Temperature	$70^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$55^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$
Single mount	12A			12A			8A			8A		
Collective mount	11A*	12		10A*	11A	11A	7A*	8	A	6A*	7 A	8A

* When installing AC relays, maintain at least 4 mm between the sockets.

SJ series Relay Sockets (PC Board Terminal)

PC board socket for RJ plug-in terminal relay.

- Used for RJ series plug-in terminal relay.
- 1-pole: 12, 2-pole: 8A
- Latch makes it easy to install and removal the relay.

Applicable Standards	Mark	Certification Organization / File No.
UL508	UL recognized, UL File No. E62437	
CSA C22.2 No. 14	CSA File No. LR84913	
EN60999-1		EU Low Voltage Directive (Finger-safe screw terminal only)

Sockets

No. of Poles	Part No.	Ordering No.	Package Quantity
1-pole	SJ1S-61	SJ1S-61PN10	10
	SJ1S-61	SJ1S-61PN50	50
2-pole	SJ2S-61	SJ2S-61PN10	10
	SJ2S-61	SJ2S-61PN50	50

Specifications

Model	SJ1S-61	SJ2S-61
Rated Current	12A	8A
Rated Insulation Voltage	250V AC/DC	
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500 V DC megger)	
Dielectric Strength	Between contact and coil: $5000 \mathrm{~V} \mathrm{AC}, 1$ minute Between contacts of the same pole: 1000 V AC, 1 minute Between contacts of the different pole: 3000 V AC, 1 minute	
Vibration Resistance	Damage limits: $90 \mathrm{~m} / \mathrm{s}^{2}$ Resonance: 10 to 55 Hz , amplitude 0.75 mm	
Shock Resistance	Damage limits: $1000 \mathrm{~m} / \mathrm{s}^{2}$	
Operating Temperature	-40 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Storage Temperature	-55 to $+85^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	5 to 85\% RH (no condensation)	
Storage Humidity	5 to 85\% RH (no condensation)	
Weight (approx.)	4.2 g	4.5 g

Dimensions

SJ1S-61

SJ2S-61

Mounting Hole Layout/Terminal Arrangement (bottom view)

SJ1S-61

SJ2S-61

SJ Series Relay Sockets (PC Board Terminal)

Operating Instructions

Installing the relay

Press in the relay to the socket by guiding the latch to pass through the slit.

The relay is in place if the latch fits the groove completely. The latch swings open and can stop at the intermediate position.

Removing the relay

Pull the latch, and pull out the relay from the socket.

The relay can be removed by fingers or by using the removal tool (MT-101).

Description \& Shape	Part No.
	MT-101

Soldering

Use a soldering iron of $60 \mathrm{~W}\left(350^{\circ} \mathrm{C}\right)$, and quickly complete soldering with approximately 3 seconds. Do not use flow or dip soldering. $\mathrm{Sn}-\mathrm{Ag}-\mathrm{Cu}$ is recommended when using lead-free solder.

PC Board Pattern Design

Press in the relay to the socket by guiding the latch to pass through the slit.
On the bottom of SJ1S-61, metal parts other than the solder leads re exposed to the mounting side of PC board as shown in the following figure as marked with $*$. Take these metal parts into consideration when designing the PC board.

DF series Finger-safe Sockets

Finger-safe sockets

- Contains no lead, cadmium, mercury, hexavalent chromium, PBB, or PBDE.
- Accepts the same marking plates as the RU series relays, allowing for easy identification of circuits.
- Fork style jumpers available for easy wiring of adjoining sockets.
- The SM2S-05DF can also mount 4-pole relays when using only 2 poles.
- GT5Y miniature electric timer can be installed.
-UL, c-UL recognized, CE marked.

Applicable Standards	Mark	Certification Organization / File No.
UL508 CSA C22.2 No. 14	c US	UL/c-UL recognized File No. E188846
EN60999-1		EU Low Voltage Directive

Specifications

Model	SM2S-05DF	SY4S-05DF
No. of Poles	2 poles	4 poles
Rated Insulation Voltage	250V AC/DC	
Rated Current	10A	6A
Insulation Resistance	$100 \mathrm{M} \Omega$ minimum (500V DC megger)	
Applicable Wire	$1.25 \mathrm{~mm}^{2}$ ($2 \mathrm{~mm}^{2}$ maximum)	
Screw Terminal	M3 slotted Phillips	
Terminal Screw Tightening Torque	0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$ (maximum tightening torque: $1.2 \mathrm{~N} \cdot \mathrm{~m}$)	
Dielectric Strength	2000V AC, 1 minute (between live and dead metal parts, between live metal parts of different poles)	
Operating Temperature	-55 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity	45 to 85\% RH (no condensation)	
Storage Temperature	-55 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Storage Humidity	45 to 85\% RH (no condensation)	
Degree of Protection	IP20	
Weight	40 g	56 g
Applicable Relay/Timer	RU2S, RM2S, GT5Y-2	RU4S, RU42S, RY4S, RY42S, GT5Y-4
Applicable Hold-down Spring for Relay/Timer	SFA-503 (RU relay), SFA-502(RM relay), SFA-511 (timer)	SFA-502 (relay). SFA-511 (timer)
Standards	UL508, CSA C22.2 No. 14, EN60999-1	

Accessories

Name		Part No.	Ordering No.	Package Quantity	Description
Relay Hold-down Spring		SFA-502	SFA-502PN20	20	Stainless steel
		SFA-503 (Note 1)	SFA-503PN20		Stainless steel
Timer Hold-down Spring		SFA-511	SFA-511PN20		Stainless steel
Jumper (SM series)	2 sockets	SM9Z-JF2	SM9Z-JF2PN10	10	For SM2S-05DF (Note 2)
	5 sockets	SM9Z-JF5	SM9Z-JF5PN10		
	8 sockets	SM9Z-JF8	SM9Z-JF8PN10		
Jumper (SY series)	2 sockets	SY9Z-JF2	SY9Z-JF2PN10		
	5 sockets	SY9Z-JF5	SY9Z-JF5PN10		For SY4S-05DF (Note 2)
	8 sockets	SY9Z-JF8	SY9Z-JF8PN10		
Marking Plate		RU9Z-P*	RU9Z-P*PN10		Compatible with RU relays.
DIN Rail (1000 mm)		BAA1000	BAA1000PN10		Aluminum
		BAP1000	BAP1000PN10		Steel
End Clip		BNL5	BNL5PN10		Steel
		BNL6	BNL6PN10		Steel
DIN Rail Spacer		SA-406B	SA-406B	1	Thickness: 5 mm Used for adjusting spacing between sockets mounted on a DIN rail

Note 1: Used when using SM2S-05DF with RU relay (cannot be used with SY4S-05DF)
Note 2: Make sure that the total current to the jumper does not exceed the rated current.

- Insert a color code in place of *. A (amber), G (green), S (blue), W (white), Y (yellow)

DF Series Finger-safe Sockets

Dimensions

Sockets

SM2S-05DF

SY4S-05DF

All dimensions are in mm .

Insulated Fork Jumpers

For SM2S-05DF

For SY4S-05DF

DF Series Finger-safe Sockets

Operating Instructions

Hold-down Springs

Installation

Insert hold-down springs into the grooves as shown below. Make sure that the small projections on the springs are facing outward.

SM2S-05DF

Removal

Remove hold-down springs by lifting them up while depressing the small projections on the hold-down springs.

Using GT5Y-2 Timers and SM2S-05DF Sockets

When installing two or more GT5Y-2 timers on SM2S-05DF sockets in close mounting proximity as shown below, take the derating curve into consideration.

Safety Precautions

- Turn off power to the socket before starting installation, removal, wiring, maintenance, and inspection of the relays. Failure to turn power off may cause electrical shock or fire hazard.
- Do not touch the terminals while power is applied, otherwise electrical shock or fire hazard may result.
- Use wires of the proper size to meet voltage and current requirements. Tighten terminal screws on the socket to
the proper tightening torque. Do not tighten more than the maximum torque. Also, do not leave the terminal screws tightened loosely, otherwise overheating may result in fire hazard.
- Observe specifications and rated values, otherwise electrical shock or fire hazard may be caused.

SU series Spring Clamp Relay Sockets

New spring-clamp relay socket providing higher level of safety.

- Can be installed easily on $35-\mathrm{mm}$-wide DIN rail in snap-on action.
- Relay contact terminals on upper side and coil terminal on the lower provide higher safety and allows easy wiring.
- Finger-safe IP20 degree of protection (IEC 60529)
- Spring clamp style connection achieves high contact reliability and vibration resistance regardless of wire size and shape.
- Stranded wire, single wire, stranded wire with ferrule can be connected easily using a screwdriver.
- Wiring is possible only by stripping the wire. Crimp terminal and soldering are not necessary, reducing wiring and labor.
- Spring clamp eliminates loosening, reducing maintenance and labor. Each terminal has two wire ports, enabling jumper wiring. Jumper is available as accessory.
- Flameproof material UL94 V-0
- UL recognized, CSA certified, EN compliant.

Applicable Standards	Mark	Certification Organization / File No.
UL508	CSA	UL recognized UL File No. E62437
CSA C22.2 No. 14	CSA File No. LR84913	
EN60999-1	EU Low Voltage Directive	

Relay Sockets

Shape	No. of Poles	Part No.	Applicable Relay
	2	SU2S-11L	RU2S RM2S GT5Y-2
	4	SU4S-11L	RU4S, RY4S, RY42S,GT5Y-4

Specifications

Part No.			SU2S-11L	SU4S-11L
Operating Temperature			-55 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Operating Humidity			45 to 85\% RH (no condensation)	
Storage Temperature			-55 to $+70^{\circ} \mathrm{C}$ (no freezing)	
Storage Humidity			45 to 85% RH (no condensation)	
Applicable Wire		Solid Wire	0.2 to $1.5 \mathrm{~mm}^{2}$	
	IEC	Stranded Wire	0.2 to $1.25 \mathrm{~mm}^{2}$	
	UL		AWG24-16	
Rated Insulation Voltage			250V	
Rated Current (Note)			10A 8A (collective mounting)	6A (4-pole) 10A (2-pole) 8A (2-pole, collective mounting)
Dielectric Strength			Between contacts of the different poles: 2500 V AC, 1 min . (between live and dead metal parts, between live metal parts of the different poles)	
Insulation Resistance			$100 \mathrm{M} \Omega$ minimum	
Degree of Protection			IP20 (IEC 60529)	
Weight (approx.)			53 g	63 g

Note: When operating over the rated current in collective mounting, keep 10 mm between the SU sockets.

SU Series Spring Clamp Relay Sockets

Accessories

Name	Shape	Specifications	Part No.	Ordering No.	Package Quantity	Remarks
Jumper		Brass (ABS cover) Weight: 3 g (approx.)	SU9Z-J5	SU9Z-J5PN10	10	Used for interconnecting relay coil terminals. Can be cut to required length.
Spring (leaf spring)		Stainless steel Weight (a pair): 1 g (approx.)	SFA-101	SFA-101PN20	10 pairs	A pair of springs are used for a
relay.						

Note 2: Make sure that the total current to the jumper does not exceed the rated current.

Operating Instructions

Identifying Socket

SU2S-11L and SU4S-11L can be identified by the color of wire ports marked below.

Color	No. of Poles	Part No.
Black	2	SU2S-11L
Gray	4	SU4S-11L

Applicable Wires

- Strip the wire insulation 9 to 10 mm from the end.
- When using stranded wires without ferrules, make sure that the core wires have not been loosened.

- In applications using ferrules for stranded wires, choose the ferrule listed in the table below. Make sure that an insulation sheath is applied when using the ferrules. When using
thin wires with insulation diameter of $\varnothing 1.6 \mathrm{~mm}$ or less, do not insert the wire too deeply where the insulation inserts into the spring clamp opening Make sure that the wire insulation is stripped 9 to 10 mm and the wire is inserted to the bottom.

Applicable Ferrules

Applicable Wire (stranded)		Part No.	Manufacturer
mm^{2}	AWG		
0.25	24	Al 0.25-12BU	
-	22	Al 0.34-8TQ	Phoenix Contact
0.5	20	Al 0.5-8WH	
		Al 0.5-10WH	

Applicable Screwdriver

For wiring, use the optional screwdriver (BC1S-SD0) or the following applicable screwdriver.

Parts Description

(1)(2)(5)(6): Spring slots for SFA-101 leaf springs (2)(3)(4)(5): Spring slots for SFA-202 leaf springs

SU Series Spring Clamp Relay Sockets

Operating Instructions

Wiring Instructions

1. Insert the optional screwdriver (BC1S-SD0) or an applicable screwdriver into the square-shaped port as shown, until the screw-driver tip touches the bottom of the spring.

2. Push in the screwdriver until it touches the bottom of the port. The wire port is now open, and the screwdriver is held in place. The screwdriver will not come off even if you release your hand.

3. While the screwdriver is retained in the port, insert the wire or ferrule into the round-shaped wire port. Each wire port can accommodate one wire or ferrule. When connecting two wires to one terminal, use the adjoining port of the same terminal.

4. Pull out the screwdriver. The connection is now complete.

Do not tilt of turn the screwdriver while it is inserted into the screwdriver port in the socket, otherwise the socket may break.

DIN Rail Mounting and Removing

Mounting
With the latch facing downward, install the socket on the DIN rail as shown below.

Removing
Pull the latch with a hand or using a screwdriver, and remove the socket from the DIN rail.

Do not mount or remove the socket at $-20^{\circ} \mathrm{C}$ or below.

Installing the Hold-down Spring

Use SFA-101 or SFA-202 hold-down spring ordered separately (see page 74). To install, insert the springs into the spring slots with the projection on the springs facing each other. Once installed, the springs cannot be removed.

SFA-101 Leaf Spring

SFA-202 Leaf Spring

Installing the Marking Plate

Because of its removable structure, the marking plate may have fallen from the socket or become loose in delivery. Make sure that the marking plate is securely installed before starting operation. The marking plate protects the conductive portion of the socket, located under the marking plate, by preventing metal fragments or pieces of wire from dropping inside. Should any such fragments enter the socket, they may cause fire hazard, damage, or malfunction.

Marking Plate

Write markings on the SU sockets using an oil-based marker, or glue printed mylar on the marking surface. The size of the printed mylar can be $8 \times 9 \mathrm{~mm}$ maximum.

SU Series Spring Clamp Relay Sockets

Operating Instructions

SU9Z-J5 Jumper for SU2S-11L and SU4S-11L

The SU9Z-J5 is used to install five sockets. When installing less than five sockets, cut the jumper according to the instructions described below.
The SU9Z-J5 is for coil terminals only.
SU9Z-J5 Jumper Specifications

Rated Current		3 A
Material	Conductor	Nickel-plated brass
	Sheath	ABS resin

Installing the SU9Z-J5 Jumper
Loosen the marking plate on the socket.
Making sure that the SU9Z-J5 jumper is correctly aligned, insert the blades into the ports in the groove of the SU socket.

Insertion Direction

Jumper Wiring to Six or More SU Sockets

To jumper wire six or more SU sockets, connect five sockets using whole jumpers and the remaining sockets using a cut jumper. Then connect the two terminals on adjoining sockets using an applicable wire (see table below).

Jumper Wiring of Terminal 14 between Adjoining Sockets

Wire	Size
Stranded Wire	0.2 to $1.25 \mathrm{~mm}^{2}$
Solid Wire	0.2 to $1.5 \mathrm{~mm}^{2}$
AWG	24 to 16

Note 1: Use a wire with cable insulation diameter of $\varnothing 3.15 \mathrm{~mm}$ maximum.
Note 2: Strip the cable insulation 9 to 10 mm from the end.

Installing the SU9Z-J5 Jumper on Two, Three, or Four SU Sockets
As shown below, slide the jumper in the sheath so that the jumper aligns with the center of the sheath.

With the sheath properly installed on the jumper, cut the sheath and jumper at the points shown below, using cutting pliers. Referring to the drawing on the below right, make sure that the sheath and jumper are cut within the cutting area. Dispose of unused portions according to local waste disposal requirements.

For Connecting	Jumper Quantity	Cutting Area	Discard
2 sockets	2	A, C	Y
2 sockets	1	A, B	X
3 sockets	1		Z
4 sockets	1	D	

After cutting the jumper and sheath, slide the jumper as shown below, so that the ends of the jumper are not exposed.

Safety Precautions

Turn off the power to the SU9Z-J5 jumper before starting installation, removal, wiring, maintenance, or inspection of the jumper, failure to turn power off may cause an electrical shock or fire hazard.
To avoid a short circuit due to incorrect wiring, confirm which terminals are connected to the jumper before starting wiring.

SF1V Relay Sockets

DIN rail mount and PC board mount socket for RF1V Force guided relays

- Finger-safe DIN rail mount socket and PC board mount socket.
- Degree of protection: IP20 (finger-safe screw terminal)
- UL, CSA, and EN compliant.

Applicable Standards	Mark	Certification Organization / File No.
UL508		UL-c-UL recognized File No. E62437
CSA C22.2 No.14	CSA File No. 253350	
EN147000 EN147100	TÜV SÜD	
	TV	EU Low Voltage Directive (DIN rail mount sockets only)

Socket Style	No. of Poles	Part No.
DIN Rail Mount Sockets	4	SF1V-4-07L
	6	SF1V-6-07L
PC Board Mount Sockets	4	SF1V-4-61
	6	SF1V-6-61

Specifications

Part No.	SF1V-4-07L	SF1V-6-07L	SF1V-4-61	SF1V-6-61
Rated Current	6A			
Rated Voltage	250V AC/DC			
Insulation Resistance	$1000 \mathrm{M} \Omega$ minimum (500V DC megger, between terminals)			
Dielectric Strength	2500V AC, 1 minute (between terminals)			
Screw Terminal Style	M3 slotted Phillips screw		-	
Applicable Wire	0.7 to $1.65 \mathrm{~mm}^{2}$ (18 AWG to 14 AWG)		-	
Recommended Screw Tightening Torque	0.5 to $0.8 \mathrm{~N} \cdot \mathrm{~m}$		-	
Terminal Strength	Wire tensile strength: 50 N min.		-	
Vibration Resistance	Damage limits: 10 to 55 Hz , amplitude 0.75 mm Resonance: 10 to 55 Hz , amplitude 0.75 mm			
Shock Resistance	$1000 \mathrm{~m} / \mathrm{s}^{2}$			
Operating Temperature (Note)	-40 to $+85^{\circ} \mathrm{C}$ (no freezing)			
Storage Temperature				
Operating Humidity	5 to 85\% RH (no condensation)			
Storage Humidity				
Degree of Protection	IP20 (finger-safe screw terminals)		-	
Weight (approx.)	40 g	55 g	9 g	10 g

Note: When using at 70 to $85^{\circ} \mathrm{C}$, reduce the switching current by $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

Operating Temperature

	Single Mounting (10mm spacing)	Collective Mounting	
Ambient Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	4-pole	$-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
		6-pole	$-40^{\circ} \mathrm{C}$ to $+65^{\circ} \mathrm{C}$
Contact Current	6A	6A	
	When the ambient temperature is over $70^{\circ} \mathrm{C}$, lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$. 5NO1NC: Up to $70^{\circ} \mathrm{C}$: Keep the total current of NO side to 24 A maximum. Over $70^{\circ} \mathrm{C}$: Lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.	4-pole	When the ambient temperature is over $70^{\circ} \mathrm{C}$, lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.
Remarks		6-pole	When the ambient temperature is over $50^{\circ} \mathrm{C}$, lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$. NO1NC: Up to $50^{\circ} \mathrm{C}$: Keep the total current of NO side to 24 A maximum. Over $50^{\circ} \mathrm{C}$: Lower the contact current at $0.1 \mathrm{~A} /{ }^{\circ} \mathrm{C}$.

Applicable Crimping Terminals

Note: Ring tongue terminals cannot be used.

Accessories

Item	Shape	Specifications	Part No.	Ordering No.	Package Quantity	Remarks
DIN Rail		Aluminum Weight: Approx. 200g	BAA1000	BAA1000PN10	10	Length: 1 m Width: 35 mm
		Steel Weight: Approx. 320g	BAP1000	BAP1000PN10	10	
		Aluminum Weight: Approx. 250g	BNDN1000	BNDN1000	1	North American standard product Length: 1 m Width: 35 mm
End Clip		Metal (zinc plated steel) Weight: Approx. 15g	BNL5	BNL5PN10	10	-
			BNL6	BNL6PN10	10	

SF1V Relay Sockets

SF1V DIN Rail Mount Socket Dimensions

SF1V-4-07L (4-pole)
(Internal Connection)

(Top View)

SF1V-6-07L (6-pole)
(Internal Connection)

(Top View)

(Panel Mounting Hole Layout)

SF1V PC Board Mount Sockets

- PC Board Mounting Hole Layout / Terminal Arrangement (Bottom View)

(Panel Mounting Hole Layout)

- PC Board Mounting Hole Layout / Terminal Arrangement (Bottom View)

Relay Sockets

Socket Selection Guide

Mounting Style	Series	Part No.	Style	No. of Poles	Color	Terminal Screw Applicable Wire	Approvals	Rated Insulation Voltage/ Rated Current	Applicable Relay, etc.	Page
DIN Rail Mount	SM	SM2S-05A	Standard	2	Black	M3 $2 \mathrm{~mm}^{2}$ max.	-	250V, 7A	RM2S, RU2S, GT5Y-2	81
		SM2S-05C	Finger-safe		Gray		UL, CSA, TÜV	250V, 7A (UL, TÜV: 10A)		81
		SM2S-05D	Slim		Black	M3, $1.25 \mathrm{~mm}^{2}$ (2 mm ${ }^{2}$ max.)	UL, c-UL	250V, 10A		81
		SM2S-05DF	Finger-safe				UL, c-UL, CE		RM2S, RU2S	82
	SY	SY2S-05A	Standard	2	Black	M3 $2 \mathrm{~mm}^{2}$ max.	-	250V, 7A	RY2S	82
		SY2S-05C	Finger-safe		Gray		UL, CSA, TÜV			82
		SY4S-05A	Standard	4	Black		-		RY4S, RY2KS, RU4S, RU42S, GT5Y-U	82
		SY4S-05C	Finger-safe		Gray		UL, CSA, TÜV			82
		SY4S-05D	Slim		Black	$\begin{aligned} & \text { M3, } 1.25 \mathrm{~mm}^{2} \\ & \left(2 \mathrm{~mm}^{2} \mathrm{max} .\right) \end{aligned}$	UL, c-UL	250V, 6A		83
		SY4S-05DF	Finger-safe				UL, c-UL, CE	250V, 10A	RU4S, RU42S, RY4S	83
	SU	SU2S-11L	Spring-clamp	2	Gray	Solid wire: 0.2 to $1.5 \mathrm{~mm}^{2}$ Stranded wire: 0.2 to $1.25 \mathrm{~mm}^{2}$	UL, CSA, CE	250V, 10A	RU2S, RM2S, GT5Y-2	83
		SU4S-11L	Spring-clamp	4				250V, 6A	RU4S, RU42S, RY4S, GT5Y-4	83
	SH	SH1B-05A	Standard	1	Black	M3.5(coil terminal: M3)$2 \mathrm{~mm}^{2}$ max.	-	250V, 10A (coil terminal: 7A)	RH1B	83
		SH1B-05C	Finger-safe		Gray		UL, CSA, TÜV			84
		SH2B-05A	Standard	2	Black	M3.5 $2 \mathrm{~mm}^{2}$ max.	-	250V, 10A	RH2B	84
		SH2B-05C	Finger-safe		Gray		UL, CSA, TÜV			84
		SH2B-05D	Slim		Black		UL, c-UL			84
		SH3B-05A	Standard	3	Black		-			84
		SH3B-05C	Finger-safe		Gray		UL, CSA, TÜV		RH3B	85
		SH4B-05A	Standard	4	Black		-		RH4B	85
		SH4B-05C	Finger-safe		Gray		UL, CSA, TÜV			85
	SR	SR2P-05A	Standard	2	Black	M3.5 $2 \mathrm{~mm}^{2}$ max.	- -	250V, 10A	RR2P, GT3 (8-pin), GT5P	85
		SR2P-05C	Finger-safe		Gray		UL, CSA, TÜV			85
		SR2P-06A	Standard		Black		-			86
		SR3P-05A	Standard	3	Black	$\begin{aligned} & \text { M3.5 } \\ & 2 \mathrm{~mm}^{2} \text { max. } \end{aligned}$	-	250V, 10A	RR3P, RR3PA, RR2KP, GT3 (11-pin)	86
		SR3P-05C	Finger-safe		Gray		UL, CSA, TÜV			86
		SR3P-06A	Standard		Black		-			86
		SR3B-05U	Standard	3	Gray		UL, CSA, TÜV		RR1BA, RR2BA, RR3B	86
Panel Mount	SM	SM2S-51	Solder	2	Black	-	UL, CSA	250V, 10A	RM2S, RU2S, GT5Y-2	87
	SY	SY2S-51	Solder	2		-	UL, CSA	250V, 7A	RY2S, RY22S	87
		SY4S-51		4		-	UL, CSA	250V, 7A (Note)	RY4S, RY2KS, RU4S, RU42S, GT5Y-U	87
	SH	SH1B-51	Solder	1	Black	-	UL, CSA	$\begin{array}{\|l\|} \hline 250 \mathrm{~V}, 10 \mathrm{~A} \\ \text { (coil terminal: 7A) } \\ \hline \end{array}$	RH1B	87
		SH2B-51		2		-	UL, CSA	250V, 10A	RH2B	87
		SH3B-51		3		-	UL, CSA		RH3B	88
		SH4B-51		4		-	UL, CSA		RH4B	88
	SR	SR2P-511	Solder	2	Black	-	UL, CSA	250V, 10A	RR2P, GT3 (8-pin), GT5P	88
		SR2P-70	Wire-wrap			-	-			88
		SR3P-511	Solder	3		-	UL, CSA		RR3P, RR3PA, RR2KP,	88
		SR3P-70	Wire-wrap			-	-			89
		SR3B-51	Solder			-	UL, CSA		RR1BA, RR2BA, RR3B	89
PC Board Mount	SM	SM2S-61	PC board	2	Black	-	UL, CSA	250V, 10A	RM2S, RU2S, GT5Y-2	89
		SM2S-62				-	UL, CSA		RM2S, RU2S	89
	SY	SY2S-61	PC board	2	Black	-	UL, CSA	250V, 7A	RY2S, RY22S	89
		SY4S-61		4		-	UL, CSA	250V, 7A (Note)	RY4S, RY2KS, RU4S, RU42S, GT5Y-U	89
		SY4S-62				-	UL, CSA	250V, 7A		90
	SH	SH1B-62	PC board	1	Black	-	UL, CSA	$\begin{array}{\|l\|} \hline \text { 250V, 10A } \\ \text { (coil terminal: 7A) } \end{array}$	RH1B	90
		SH2B-62		2		-	UL, CSA	250V, 10A	RH2B	90
		SH3B-62		3		-	UL, CSA		RH3B	90
		SH4B-62		4		-	UL, CSA		RH4B	90

Note: When using only 2 poles of the 4-pole sockets SY4S-51 and SY4S-61, the UL rated current is 10A.
Terminal Screw Tightening Torque for DIN Rail Mount Sockets

Socket Series	Terminal Screw Tightening Torque	Socket Series	Terminal Screw Tightening Torque
SR	1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$	SM	0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$
SH	1.0 to $1.3 \mathrm{~N} \cdot \mathrm{~m}$	SY	0.6 to $1.0 \mathrm{~N} \cdot \mathrm{~m}$

Relay Sockets

Sockets and Applicable Hold-down Springs

DIN Rail Mount Sockets

Socket Part No.	Applicable Relays and Timers	Hold-down Spring	
		Wire Spring	Leaf Spring
SM2S-05A	RM2S, RU2S	-	SFA-101, SFA-202
	GT5Y-2	-	SFA-202
SM2S-05C	RM2S, RU2S	SY4S-02F1	SFA-101, SFA-202
	GT5Y-2	-	SFA-202
$\begin{array}{\|l\|} \text { SM2S-05D } \\ \text { SM2S-05DF } \end{array}$	RM2S	-	SFA-502
	RU2S	-	SFA-503
	GT5Y-2	-	SFA-511
SY2S-05A	RY2S, RY22S	-	SFA-101
SY2S-05C		SY2S-02F1	SFA-202
SY4S-05A	RY4S, RU4S, RU42S	-	SFA-101, SFA-202
	RY2KS, GT5Y-4	-	SFA-202
SY4S-05C	RY4S, RU4S, RU42S	SY4S-02F1	SFA-101, SFA-202
	RY2KS, GT5Y-4	-	SFA-202
SY4S-05D	RY4S, RU4S, RU42S	-	SFA-502
	RY2KS, GT5Y-4	-	SFA-511
SY4S-05DF	RY4S, RU4S, RU42S	-	SFA-502
	GT5Y-4	-	SFA-511
SU2S-11L	RU2S, RM2S	-	SFA-101, SFA-202
	GT5Y-2	-	SFA-202
SU4S-11L	RU4S, RU42S, RY4S	-	SFA-101, SFA-202
	GT5Y-4	-	SFA-202
SH1B-05A	RH1B	-	SFA-101, SFA-202
SH1B-05C		SY2S-02F1	
SH2B-05A	RH2B	-	SFA-101, SFA-202
SH2B-05C	RH2B	SY2S-02F1	SFA-101, SFA-202
SH2B-05D	RH2B	-	SFA-502
SH3B-05A	RH3B	-	SFA-101
SH3B-05C		SH3B-05F1	SFA-202
SH4B-05A	RH4B	-	SFA-101
SH4B-05C		SH4B-02F1	SFA-202
$\begin{array}{\|l} \hline \text { SR2P-05A } \\ \text { SR2P-05C } \end{array}$	RR2P	SR2B-02F1	-
	GT5P	-	SFA-203
SR2P-06A	RR2P	SR2B-02F1	SFA-202
	GT3 (8-pin), GT5P	-	SFA-202
$\begin{array}{\|l} \text { SR3P-05A } \\ \text { SR3P-05C } \end{array}$	RR3P, RR3PA	SR3B-02F1	-
	RR2KP	SR3P-06F3	-
	GT3 (11-pin)	-	SFA-203
SR3P-06A	RR3P, RR3PA	SR3B-02F1	SFA-202
	RR2KP	SR3P-06F3	-
	GT3 (11-pin)	-	SFA-202
SR3B-05U	RR1BA, RR2BA, RR3B	SR3B-02F1	SFA-202

Socket Part No.	Applicable Relays and Timers	Hold-down Spring	
		Wire Spring	Leaf Spring
$\begin{aligned} & \text { SM2S-51 } \\ & \text { SM2S-61 } \end{aligned}$	RM2S, RU2S	$\begin{gathered} \hline \text { SY4S-51F1 } \\ \text { (SY4S-02F1) } \end{gathered}$	$\begin{aligned} & \text { SFA-301 } \\ & \text { SFA-302 } \end{aligned}$
	GT5Y-2	-	SFA-302
SM2S-62	RM2S, RU2S	$\begin{gathered} \hline \text { SY4S-51F1 } \\ \text { (SY4S-02F1) } \end{gathered}$	SFA-504
$\begin{array}{\|l\|} \hline \text { SY2S-51 } \\ \text { SY2S-61 } \\ \hline \end{array}$	RY2S, RY22S	SY4S-51F1	$\begin{aligned} & \text { SFA-301 } \\ & \text { SFA-302 } \end{aligned}$
\|SY4S-51	RY4S, RU4S, RU42S	$\begin{aligned} & \hline \text { SY4S-51F1 } \\ & \text { (SY4S-02F1) } \end{aligned}$	$\begin{aligned} & \hline \text { SFA-301 } \\ & \text { SFA-302 } \end{aligned}$
	RY2KS	$\begin{gathered} \text { SY4S-51F3 } \\ \text { (SY4S-02F3) } \end{gathered}$	SFA-302
	GT5Y-4	-	SFA-302
SY4S-62	RY4S, RU4S, RU42S	$\begin{gathered} \hline \text { SY4S-51F1 } \\ \text { (SY4S-02F1) } \end{gathered}$	SFA-504
	RY2KS	$\begin{gathered} \text { SY4S-51F3 } \\ \text { (SY4S-02F3) } \end{gathered}$	-
$\begin{array}{\|l\|} \hline \text { SH1B-51 } \\ \text { SH1B-62 } \\ \hline \end{array}$	RH1B	SY4S-51F1	$\begin{aligned} & \text { SFA-301 } \\ & \text { SFA-302 } \end{aligned}$
SH2B-51	RH2B	$\begin{aligned} & \hline \text { SY4S-51F1 } \\ & \text { (SY4S-02F1) } \end{aligned}$	$\begin{aligned} & \text { SFA-301 } \\ & \text { SFA-302 } \end{aligned}$
SH2B-62	RH2B	$\begin{aligned} & \hline \text { SY4S-51F1 } \\ & \text { (SY4S-02F1) } \end{aligned}$	SFA-504
$\begin{array}{\|l\|} \hline \text { SH3B-51 } \\ \text { SH3B-62 } \\ \hline \end{array}$	RH3B	$\begin{aligned} & \text { SY4S-51F1 } \\ & \text { (SH3B-05F1) } \end{aligned}$	$\begin{aligned} & \text { SFA-301 } \\ & \text { SFA-302 } \\ & \hline \end{aligned}$
$\begin{array}{\|l\|} \hline \text { SH4B-51 } \\ \text { SH4B-62 } \\ \hline \end{array}$	RH4B	$\begin{gathered} \hline \text { SY4S-51F1×2 } \\ (\text { SH4B-02F1) } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { SFA-301 } \\ & \text { SFA-302 } \\ & \hline \end{aligned}$
$\begin{array}{\|l\|l\|l} \text { SR2P-511 } \\ \text { SR2P-70 } \end{array}$	RR2P	SR3P-01F1	-
	GT3 (8-pin)	-	SFA-402
	GT5P	-	SFA-302
$\begin{array}{\|l} \text { SR3P-511 } \\ \text { SR3P-70 } \end{array}$	RR3P, RR3PA	SR3P-01F1	-
	RR2KP	SR3P-511F3	-
	GT3 (11-pin)	-	SFA-402
SR3B-51	RR1BA, RR2BA, RR3B	SR3B-02F1	-

Note 1: When mounting relays with check button on panel mount or PC
board mount sockets, use hold-down springs shown in (). Holddown springs for relays with check button are not available for SR2P511, SR2P-70, SR3P-511, and SR3P-70
Note 2: For close mounting of panel mount or PC board mount sockets, use wire springs or SFA-302 leaf springs.
Note 3: SM2S-62 and SY4S-62 sockets cannot be used on GT5Y-2 and GY5Y-4 timers

Hold-down Springs

Style	Part No.	Ordering No.	Package Quantity
Wire Spring	SR2B-02F1	SR2B-02F1PN10	10
	SR3B-02F1	SR3B-02F1PN10	
	SR3P-01F1	SR3P-01F1PN10	
	SR3P-06F3	SR3P-06F3PN10	
	SR3P-511F3	SR3P-511F3PN10	
	SH3B-05F1	SH3B-05F1PN10	
	SH4B-02F1	SH4B-02F1PN10	
	SY2S-02F1	SY2S-02F1PN10	
	SY4S-02F1	SY4S-02F1PN10	
	SY4S-02F3	SY4S-02F3PN10	
	SY4S-51F1	SY4S-51F1PN10	
	SY4S-51F3	SY4S-51F3PN10	
Leaf Spring	SFA-101	SFA-101PN20	$\begin{gathered} 20 \\ (10 \text { pairs }) \end{gathered}$
	SFA-202	SFA-202PN20	
	SFA-203	SFA-203PN20	
	SFA-301	SFA-301PN20	
	SFA-302	SFA-302PN20	
	SFA-402	SFA-402PN10	10
	SFA-502	SFA-502PN20	
	SFA-503	SFA-503PN20	(10 pairs)
	SFA-504	SFA-504PN10	10
	SFA-511	SFA-511PN20	$\begin{array}{\|c\|} \hline 20 \\ (10 \text { pairs }) \end{array}$

 SH4B-02F1 SY4S-02F1

SFA-302

SR2B-02F1

SFA-502

SFA-503

SFA-504

SY4S-51F3

Relay Sockets
Accessories for Sockets

Name	Shape	Specifications	Part No.	Ordering No.	Package Quantity	Remarks
DIN Rail		Aluminum Weight: Approx. 200g	BAA1000	BAA1000PN10	10	Length: 1 m Width: 35 mm
		Steel Weight: Approx. 320g	BAP1000	BAP1000PN10	10	
End Clip		Zinc-plated steel Weight: Approx. 15g	BNL5	BNL5PN10	10	Used on a DIN rail to fasten relay sockets
			BNL6	BNL6PN10	10	
DIN Rail Spacer		Plastic (black)	SA-406B	SA-406B	1	Thickness: 5 mm Used for adjusting spacing between sockets mounted on a DIN rail
End Spacer	5	Plastic (black)	SA-203B	SA-203B	1	Used for mounting DIN rail mount sockets directly on a panel surface
Intermediate Spacer			SA-204B	SA-204B	1	

DIN Rail Mount Sockets

When using

Terminal Arrangement

SM2S-05D

Relay Sockets

Relay Sockets

Relay Sockets

Relay Sockets

Relay Sockets

Panel Mount Sockets

SH Series

Relay Sockets

Relay Sockets
SR3P-70
SR3B-51
PC Board Mount Sockets

Terminal Arrangement

$\square 17.2$ min. when using
a hold-down spring.
F) ${ }^{13.2}=8.2$ min.

13.2 min. when using a hold-down spring
for the relay with check button. for the relay with check button.

SY2S-61

Terminal Arrangement

SY4S-61

Terminal Arrangement

Relay Sockets

Accessories

DIN Rails

The BAA is a $35-\mathrm{mm}$-wide DIN rail made of durable extruded aluminum. The BAP is a $35-\mathrm{mm}$-wide DIN rail made of rust proof sheet steel.

Application Example of End Clip and DIN Rail Spacer
Use DIN rail spacers for adding space between adjoining sockets to prevent miswiring and identify wiring groups.

Surface Mounting of DIN Rail Mount Socket

End Spacer

Intermediate Spacer

Part No.	Package Quantity	Color
SA-204B	1	Black

The end spacer and intermediate spacer are used for mounting DIN rail mount sockets on panel surfaces. In collective mounting using these spacers, screws can be eliminated at every other socket. Mounting centers are the same in single mounting and collective mounting.
Note: DIN rail mount sockets can also mount directly on panel surfaces without using these spacers, then the mounting centers are different from when using spacers.

Relay Sockets

Collective Mounting of Panel Mount Sockets

The SY, SM, and SH series panel mount sockets are designed to mount in panel cut-outs collectively. These sockets can be mounted in the same panel cut-out due to the standardized size.

Mounting into Panel Cut-out

To mount, insert the sockets with mounting springs facing top and bottom edges of the panel cut-out. Push the mounting spring using a screwdriver until the mounting spring clicks into the panel.

Soldering

When soldering, use a soldering iron of 60W $\left(350^{\circ} \mathrm{C}\right)$, and quickly complete soldering within approximately 3 seconds. $\mathrm{Sn}-\mathrm{Ag}-\mathrm{Cu}$ is recommended for lead-free soldering. Ensure to keep the solder away from the socket as much as possible. Do not apply external force by

Panel cut-out width $\mathrm{W}=18+27+27+18+27+18+18+27+27-5.6$
$=201.4_{-0.5}^{+0}$
Socket Width

Socket	Width
SH1B-51	18 mm
SH2B-51	27 mm
SH3B-51	36 mm
SH4B-51	45 mm
SM2S-51	27 mm
SY2S-51	18 mm
SY4S-51	27 mm

Specifications and other descriptions in this catalog are subject to change without notice.

[^0]: Blank or C comes in place of $*$ to represent types with or without a latching lever.

[^1]: The above temperature rise curves show the characteristics when 100% the rated coil voltage is applied.
 Load current $6 \mathrm{~A} \times 2$ poles is for the RU4 only.
 The heat resistance of the coil is $120^{\circ} \mathrm{C}$. The slant dashed line indicates the allowable temperature rise for the coil at different ambient temperatures.

[^2]: Note 1: For relays with LED indicator, the rated current increases by approx. 2 mA .
 Note 2: Maximum continuous applied voltage is the maximum voltage that can be applied to relay coils.

